
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Are Your Android App Analyzers Still Relevant? MobileSoft 2024, April 2024, Lisbon, Portugal

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Are Your Android App Analyzers Still Relevant?
Anonymous Author(s)

ABSTRACT
The diversity of mobile devices on the market fostered the emer-
gence of cross-platform frameworks, the adoption of which can
simplify the development and deployment of mobile applications
onmultiple platforms at once. Meanwhile, this trend also challenges
the state-of-the-arts static program analysis techniques in terms of
analyzing Android apps with soundness and completeness. To inves-
tigate the impact of cross-platform frameworks on static analyzers,
we surveyed seven of the most popular cross-platform frameworks
and proposed a tool in detecting the adoption of cross-platform
frameworks. We also explored the prevalence of cross-platform
frameworks in the most popular one hundred apps from Google
Play and Tencent App Store. In addition, by investigating the cross-
platform code and their location, we find that the state-of-the-arts
Android static analyzers fail to analyze the cross-platform applica-
tions mainly because they lack the capability of handling Dart and
JavaScript.
ACM Reference Format:
Anonymous Author(s). 2024. Are Your Android App Analyzers Still Rele-
vant?. In Proceedings of 11th International Conference on Mobile Software
Engineering and Systems (MobileSoft 2024). ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Android analysis analyzers have been used to analyze the bytecode
of compiled Android apps through reverse engineering. Their pri-
mary goal is to assist developers, security experts, and researchers
in identifying issues [1–3], vulnerabilities [4–6], malware [7–10],
and potential risks [11–13] within applications. This, in turn, helps
improve the quality, performance, and security of the applica-
tions [14, 15]. Among them, a large number of static analysis tools
conduct in-depth analysis of an application’s APK format (the re-
leased version as it is not always possible to access the application’s
source code) [5, 16, 17]. In such a case, they often need to first
reverse engineer the application’s bytecode and subsequently trans-
form it into an intermediate representation, and finally conduct
systematic code scrutiny to detect potential vulnerabilities and
security risks, ultimately enhancing the security of applications.

In the mobile ecosystem, with over 2 million apps, Android has
consistently maintained a leading position. At the same time, iOS
also holds a significant market share, and yet there are new mobile
platforms such as OpenHarmony [18] are about to emerge. This
multi-platform situation challenges app providers maintain apps

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobileSoft 2024, April 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

in an effective way. In fact, app providers have to keep multiple
teams (e.g., one for Android, one for iOS, and possibly one for
OpenHarmony) to keep their apps updated accordingly. To mitigate
this challenge, our community has introduced sevral cross-platform
development paradigms. By leveraging cross-platform frameworks,
it is feasible to develop app once and deploy it everywhere across
different mobile platforms.

Considering great benefits brought by cross-platform develop-
ments, we hypothesize (i.e., Hypothesis 1) that many apps (espe-
cially large and complex ones) are already to be developed with
cross-platform frameworks. The immediate question following this
phenomenon is whether existing Android app analyzers are still
relevant. As mentioned earlier, the majority of static analyzers are
proposed for directly analyzing Android APK files, which include
DEX files that are eventually compiled from Java/Kotlin source code.
In other words, the current form of analysis is explicitly tailored
to DEX files. Unfortunately, Java/Kotlin is no longer the language
of choice for cross-platform frameworks, which often utilize other
languages such as Javascript to form mobile apps. We, therefore,
hypothesize (i.e., Hypothesis 2) that those established static An-
droid app analyzers are no longer effective for scrutinizing apps
generated via a cross-platform paradigm.

In this work, we aim to understand the current status of cross-
platform frameworks usages in the mobile market and subsequently
validate the aforementioned two hypotheses through the following
two research questions.

• RQ1 (Hypothesis 1): How are cross-platform apps spread
in the current mobile ecosystem?

• RQ2 (Hypothesis 2): Can existing Android app analyzers
be effectively applied to analyze cross-platform apps?

Our preliminary experimental results discover seven cross-platform
frameworks, with React Native and Flutter being the most popular
ones. The result further discloses that the distribution of cross-
platform apps is quite different (over 60% of popular apps in China
vs. around one-fifth worldwide). Moreover, as cross-platform An-
droid apps have their core application code stored in other places
rather than Dalvik, the majority of existing static app analyzers
focusing on dissecting Dalvik bytecode become irrelevant when
applied to cross-platform apps. There is hence a strong need for
our community to invent dedicated approaches to analyze cross-
platform apps.

2 EXPERIMENTAL SETUP
Dataset. To study the popularity of cross-platform applications
in the market, we need to collect a set of real-world Android apps
to fulfill our experiment exploitation. In this work, we resort to
two markets (i.e., Google Play and Tencent App Store) to harvest
Android apps. These two markets are selected to represent the app
distribution outside and inside China, respectively. Google Play is
the largest Android application market in the world, with the most
complete applications and the largest number of users. Tencent
App Store [19] is a third-party integrated management software for

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MobileSoft 2024, April 2024, Lisbon, Portugal Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Android smartphones launched by Tencent, and it is also one of the
largest mobile phone application acquisition platforms in China.
We downloaded the most popular 100 apps from Google Play and
the Tencent App Store for our study.

Methodology. To answer the aforementioned two research ques-
tions, we first investigate the prevalence of cross-platform frame-
works and then examine how these cross-platform frameworks have
been integrated and implemented into Android apps in practise. To
this end, given an Android app, we need to first reverse-engineer it
and extract its app code. We achieve this by leveraging the famous
Soot framework which can directly decompile Dalvik bytecode in
Android APK to Jimple format, an intermediate representation that
is easy to understand. Then, we need to go through the code to
check if cross-platform frameworks are involved. In this work, we
achieve this by extracting the code packages and comparing to the
known cross-platform framework package names. We will then
report our findings in the RQ1 at Section 3. Once cross-platform
frameworks are identified, we go one step further (also manually)
to understand how the code (written based on the cross-platform
frameworks) copes with the Android execution mechanism. We
will give more details in the RQ2 at Section 3.

3 RESULT
3.1 RQ1: How are cross-platform apps spread in

the current mobile ecosystem?
Table 1 summarizes the list of cross-platform frameworks (i.e., the
first column) used in the Top-100 apps from Google Play and Ten-
cent App Store (the second and third columns), respectively. The
second column of Table 1 presents the programming languages for
cross-platform implementation in each cross-platform framework.
In total, we have identified seven cross-platform frameworks, which
are briefly introduced below.

(1) React Native is an open-source framework developed by
Meta for simplifying cross-platform app development. Re-
act Native is based on the popular React framework [20],
which is a Node.js-based JavaScript library used for creating
web user interfaces. It allows developers to use a shared
JavaScript codebase for both Android and iOS development
encompassing Interface (UI) composition and other general
business logic. Further, it features cross-language commu-
nication between JavaScript and the native side, blending
native app performance with web development’s flexibility
and efficiency. Its flexibility allows it to build new apps from
scratch or to be incorporated into the existing Android and
iOS projects, with notable usage by Facebook, Shopify, and
Skype.

(2) Flutter is introduced by Google aimed to quickly build
high-quality mobile apps on iOS and Android[21]. Flutter
introduced the programming language, Dart, as the devel-
oper’s cross-language implementation. In the build and
working process, Dart is compiled into binary code, and
that’s why it runs with the native performance of Objective-
C, Swift, Java, or Kotlin. Both UI composition and business
logic can be implemented through Dart. In addition, Flutter
has integrated Hot-reload. This allows Flutter to automati-
cally rebuild the UI widget tree, allowing users to quickly

Table 1: The list of identified cross-platform frameworks and their
usages among popular Android apps.

App Market
Framework Language Google Play Tencent App Store

Apache Cordova JavaScript 1 4
Corona SDK Lua 0 2

Flutter Dart 2 39
Ionic Framework JavaScript 1 0

React Native JavaScript 14 30
Uniapp JavaScript 0 1
Weex JavaScript 0 14

view the effects of changes. Numerous corporations use
flutter, including Uber, eBay, Alibaba, etc[22].

(3) Weex is a framework for building high-performance cross-
platform mobile applications with a modern web develop-
ment experience, which enables developers to use modern
web development skills to build Android, iOS, and Web
apps with a single codebase[23]. Vue is a popular JavaScript
framework for web apps with easy binding between data
in memory and the user interface, and Weex allows users
to code native mobile apps with the Vue framework. The
language used by Weex is also JavaScript. Companies using
Weex include Alibaba, etc.

(4) Uniapp is a framework for developing all front-end appli-
cations using Vue.js. Developers write a set of codes that
can be published to iOS, Android, Responsive Web, and
various mini programs[24]. Uniapp has a common front-
end technology stack, which reduces the cost of learning.
It also supports vue syntax and WeChat mini program API.
The applications using Uniapp are mainly WeChat mini-
programs.

(5) Ionic is an open-source UI toolkit for building performant,
high-quality mobile apps using web technologies — HTML,
CSS, and JavaScript — with integrations for popular frame-
works like Angular, React, and Vue[25]. Ionic uses modern
Web APIs such as Custom Elements and Shadow DOM,
which have a stable API, and aren’t at the whim of a single
platform vendor. Companies using ionic include Southwest
Airline, Sanvello, H&R Block, etc.

(6) Apache Cordova is an open-source mobile development
framework. It allows users to use standard web technolo-
gies - HTML5, CSS3, and JavaScript for cross-platform
development[26]. Compared with Ionic, Cordova focuses
more on plugins. Plugins are an integral part of the Cordova
ecosystem. Users can search for Cordova plugins using plu-
gin search or npm, and develop their plugins. Businesses
using Apache Cordova areWalmart, Adobe, QrStore, etc.

(7) Corona SDK, developed byAnsca, is an excellent option for
any kind ofmobile developer from beginner to advanced[27].
Corona uses the Lua programming language. Corona has
Automatic OpenGL-ES Integration, so there is no need to
call extensive classes or functions to create simple screen
manipulations. The applications using Corona SDK include
Gojek, easypaisa - Payments Made Easy, Violin: Magical Bow,
and so on.

Observant readers may have noticed that, as also highlighted
in Table 1, the distribution of cross-platform frameworks is quite

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Are Your Android App Analyzers Still Relevant? MobileSoft 2024, April 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

different between Google Play and Tencent App Store. In Google
Play, there are four cross-platform frameworks identified, and in
total 17 apps (out of the top 100 apps) developed based on them.
The most popular framework is React Native. In the Tencent App
Store, there are six cross-platform frameworks leveraged, and in
total 62 apps (out of the top 100 apps) developed based on them.
Flutter is the most popular framework, followed by the React Native
framework. The fact that over half of the apps are now developed via
cross-platform apps in the Chinese market shows that the usage of
cross-platform frameworks in China is significantly higher than that
outside of China. Although we do not know the reason behind that,
this result does motivate us to re-think if the existing static Android
app analyzers proposed by our fellow researchers in the Mobile
Software Engineering community are still relevant for dissecting
the state-of-the-art Android apps. We hence go one step deeper to
check that by manually exploiting the implementation mechanism
of cross-platform frameworks when applied to generate Android
apps. We will discuss our findings in the next subsection.

3.2 RQ2: Can existing Android app analyzers be
effectively applied to analyze cross-platform
apps?

To the best of our knowledge, existing app analyzers such as Flow-
Droid [11] or IccTA [28] are designed to analyze Android apps’
Dalvik bytecode, which is compiled from Android platform-specific
code (e.g., Java or Kotlin). During the development of cross-platform
apps, the developer’s implementation shifted from platform-specific
code to other languages. Indeed, as highlighted in Table 1, none of
the cross-platform frameworks take Java (or Kotlin) as their pro-
gramming language. Since majority of static Android app analyzers
focus on analyzing Java code, these approaches will not be able
to directly analyze the source code project developed based on
cross-platform frameworks.

However, it is not yet feasible to conclude that those existing
analyzers cannot be applied to analyze Android apps built via cross-
platform frameworks. Indeed, the build process provided by the
cross-platform frameworks could still contain the platform-specific
language like Dalvik bytecode (compatible with Java bytecode) to
achieve native user experience. In such a case, existing analyzers
should still be effective when applied to analyze cross-platform
apps.

Towards confirming the aforementioned hypothesis, we go one
step further to understand the build and working process of cross-
platform apps (arrows in blue). Figure 1 illustrates an example
drawn based on the popular React Native framework. To ease the
understanding, and for comparison purposes, we also present the
build and working process for native Android apps. As shown
in Figure 1, for native Android apps, Java code will be compiled
into Dalvik bytecode, which will be executed via a Dalvik Virtual
Machine. The Dalvik code (same as the Java code) follows the
Android’s working paradigm, with components such as Activity to
represent GUI pages and lifecycle methods to reflect the working
mechanism of Android.

For React Native apps, the Javascript code (written by app devel-
opers) will not be compiled into Dalvik bytecode but put into a JS
bundle. When building the app, the cross-platform framework will

generate a Dalvik bytecode that contains wrapper code (following
the Android’s working paradigm) to achieve the native experience.
The actual app functions are still within Javascript code that will
be executed over a Javascript Engine. React Native supports three
distinct JavaScript engines, namely Hermes, JavaScriptCore, and
V8. These engines enable the execution of JavaScript code through
the so-called bridge channel.

The aforementioned example clearly shows that the working
process between native and cross-platformAndroid apps is different.
The former one has the app’s main code stored in Dalvik bytecode,
while the latter one has its core code stored in other places in other
formats. As a result, the majority of existing static Android app
analyzers that are designed to analyze Dalvik bytecode are no longer
relevant when applied to cross-platform Android apps. Considering
that a significant number of apps are now developed via cross-
platform frameworks (i.e., 62% top apps in China and around one-
fifth of apps worldwide), we argue that our community should pay
more attention to cross-platform apps and invent dedicated app
analyzers to address the various issues of cross-platform apps.

Java

Dalvik

Build

Javascript

Dalvik

Android Apk

JS Bundle

Build

Apk

Native React Native

Activity

OnCreate OnDestory… …
Javascript

EngineBridge

Figure 1: The build and working process of native Android app and
React Native Android app.

4 CONCLUSION
We researched seven of the most popular cross-platform frame-
works and developed a tool to determine their usage during app
development. We conducted our experiments on the 100 most popu-
lar Android apps from the Google Play Store and Tencent App Store
and analyzed them according to cross-platform framework types.
The experimental results show that the proportion of usage of the
cross-platform framework has reached more than 15% in the global
market and even over 60% in the Chinese market. React Native and
Flutter have the most users. Furthermore, we explored the language
used by each cross-platform framework, along with the storage
location and execution process of the corresponding code. This
illustrates that today’s Java-centric Android static analysis tools
are unable to analyze those developers’ cross-platform implemen-
tation in applications. Therefore, our community is in urgent need
of static analysis tools developed specifically for applications built
with these cross-platform frameworks.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MobileSoft 2024, April 2024, Lisbon, Portugal Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

REFERENCES
[1] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating the detection of

api-related compatibility issues in android apps,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2018, pp.
153–163.

[2] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and X. Liu, “Understanding and
detecting fragmentation-induced compatibility issues for android apps,” IEEE
Transactions on Software Engineering, vol. 46, no. 11, pp. 1176–1199, 2018.

[3] X. Sun, X. Chen, Y. Liu, J. Grundy, and L. Li, “Taming android fragmentation
through lightweight crowdsourced testing,” IEEE Transactions on Software Engi-
neering, 2023.

[4] Y.-C. Lin, “Androbugs framework: An android application security vulnerability
scanner,” 2015, presented at Blackhat Europe 2015.

[5] Y. Liu, L. Li, P. Kong, X. Sun, and T. F. Bissyandé, “A first look at security risks of
android tv apps,” in 2021 36th IEEE/ACM International Conference on Automated
Software Engineering Workshops (ASEW). IEEE, 2021, pp. 59–64.

[6] X. Sun, X. Chen, K. Liu, S. Wen, L. Li, and J. Grundy, “Characterizing sensor
leaks in android apps,” in 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2021, pp. 498–509.

[7] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat: Android
malware detection through manifest and api calls tracing,” in 2012 Seventh Asia
joint conference on information security. IEEE, 2012, pp. 62–69.

[8] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi, “Droidnative: Automating and
optimizing detection of android native code malware variants,” computers &
security, vol. 65, pp. 230–246, 2017.

[9] X. Chen, C. Li, D.Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren, “Android
hiv: A study of repackaging malware for evading machine-learning detection,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp. 987–1001,
2019.

[10] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep learning for android malware
defenses: a systematic literature review,” ACM Computing Surveys (CSUR), 2022.

[11] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel, “Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps,” Acm Sigplan Notices, vol. 49,
no. 6, pp. 259–269, 2014.

[12] L. Li, K. Allix, D. Li, A. Bartel, T. F. Bissyandé, and J. Klein, “Potential component
leaks in android apps: An investigation into a new feature set for malware detec-
tion,” in 2015 IEEE International Conference on Software Quality, Reliability and

Security. IEEE, 2015, pp. 195–200.
[13] Y. Liu, X. Chen, P. Liu, J. Grundy, C. Chen, and L. Li, “Reunify: A step towards

whole program analysis for react native android apps,” in 2023 IEEE/ACM Inter-
national Conference on Automated Software Engineering, 2023.

[14] Y. Hu, H. Wang, R. He, L. Li, G. Tyson, I. Castro, Y. Guo, L. Wu, and G. Xu, “Mobile
app squatting,” in The Web Conference 2020 (WWW 2020), 2020.

[15] P. Liu, Y. Zhao, H. Cai, M. Fazzini, J. Grundy, and L. Li, “Automatically detect-
ing api-induced compatibility issues in android apps: A comparative analysis
(replicability studies),” in The ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2022), 2022.

[16] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein,
and L. Traon, “Static analysis of android apps: A systematic literature review,”
Information and Software Technology, vol. 88, pp. 67–95, 2017.

[17] J. Samhi, A. Bartel, T. F. Bissyandé, and J. Klein, “Raicc: Revealing atypical inter-
component communication in android apps,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1398–1409.

[18] L. Li, X. Gao, H. Sun, C. Hu, X. Sun, H. Wang, H. Cai, T. Su, X. Luo, T. F. Bis-
syandé et al., “Software engineering for openharmony: A research roadmap,”
arXiv preprint arXiv:2311.01311, 2023.

[19] “Tencent app store,” Online, July 10 2023, accessed: 2023-7-10. [Online].
Available: https://sj.qq.com/app

[20] React, 2023. [Online]. Available: https://react.dev/
[21] “Flutter - build apps for any screen,” Online, 2023. [Online]. Available:

https://flutter.dev/docs
[22] “Flutter apps in production,” Online, 2023. [Online]. Available: https:

//flutter.dev/showcase
[23] “weex,” Online, 2023. [Online]. Available: https://weexapp.com/zh/
[24] “uni-app,” Online, 2023. [Online]. Available: https://uniapp.dcloud.net.cn/
[25] “The mobile sdk for the web.” Online, 2023. [Online]. Available:

https://ionicframework.com/
[26] “Apache cordova,” Online, 2023. [Online]. Available: https://cordova.apache.org/
[27] “corona,” Online, 2023. [Online]. Available: https://coronalabs.com/
[28] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bod-

den, D. Octeau, and P. McDaniel, “Iccta: Detecting inter-component privacy
leaks in android apps,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1. IEEE, 2015, pp. 280–291.

4

https://sj.qq.com/app
https://react.dev/
https://flutter.dev/docs
https://flutter.dev/showcase
https://flutter.dev/showcase
https://weexapp.com/zh/
https://uniapp.dcloud.net.cn/
https://ionicframework.com/
https://cordova.apache.org/
https://coronalabs.com/

	Abstract
	1 Introduction
	2 Experimental Setup
	3 Result
	3.1 RQ1: How are cross-platform apps spread in the current mobile ecosystem?
	3.2 RQ2: Can existing Android app analyzers be effectively applied to analyze cross-platform apps?

	4 Conclusion
	References

