
Detecting Temporal Inconsistency in Biased
Datasets for Android Malware Detection

Abstract—Machine learning (ML) has exhibited great potential
in Android malware detection. Yet, the reliability of these
ML models, as well as the fairness of their evaluation, hinge
significantly on the quality of the datasets used. A significant issue
compromising these aspects is the presence of temporal incon-
sistencies within datasets, which could lead to overestimated de-
tection performance. While previous research has acknowledged
the impact of temporal inconsistencies, the proposed detection
approaches often falter in accuracy and practicality. Previous
studies have had limitations when it comes to dealing with
complex cases of temporal inconsistencies. Additionally, their
approaches require knowledge of a dataset’s temporal attributes,
which is often not realistic in real-world applications. In response
to these challenges, we propose a novel ML-based approach to
comprehensively and effectively detect temporal inconsistencies
in Android malware datasets, regardless of the magnitude of
these inconsistencies. Distinguishing itself from prior attempts,
our approach accurately identifies inconsistencies in unknown
datasets, without making any assumptions about their temporal
attributes. Moreover, we introduce a new benchmark dataset
of 78,000 diverse Android samples, spanning malware to benign
samples from 2010 to 2022, for exploring temporal inconsistency.
A rigorous evaluation of our approach using this dataset reveals
its proficiency in managing temporal inconsistencies, achieving a
remarkable 98.3% detection accuracy. We further validate the
efficacy of our feature selection procedure and demonstrate the
robustness of our approach when applied to unknown datasets.
Collectively, our findings pioneer a novel performance standard
in Android malware detection assessments, contributing to the
enhancement of reliability in ML-based techniques.

I. INTRODUCTION

Machine Learning (ML) techniques have been extensively
adopted as effective approaches for Android malware detec-
tion [1], [2]. Trained on large and representative datasets, these
ML models have shown success in distinguishing between
benign and malicious apps. However, numerous studies [3],
[4] have suggested that unrealistic experimental designs can
introduce substantial biases, resulting in overly optimistic
performance evaluations. Some claims from the literature
even suggest near-perfect detection accuracy [5], [6], [2], a
performance that is often an overestimation of the model’s
actual capabilities [3].

One of the recurring biases, temporal inconsistency, sig-
nificantly impacts ML-based malware detection models [3],
[4], [7]. Temporal inconsistency arises when malware and
benign samples selected for training the models span different
time periods. For example, Khoda et al.’s study [8] employed
the Drebin [9], [10] and Genome datasets, which comprised
malware samples collected prior to 2016, while the benign
samples were gathered more recently, leading to a temporal
inconsistency in the dataset. This disregard for the temporal

attributes can mislead the model’s learning, making it derive
patterns from the samples’ temporal attributes rather than their
inherent malicious or benign characteristics [4]. As a result,
the models’ performance metrics might reflect their ability
to recognize these temporal differences rather than the actual
malicious or benign behaviors. Despite the evident impact of
temporal inconsistency, no established method exists to detect
and mitigate this issue in biased datasets, posing a significant
research gap and an opportunity for further investigation.

Prior work [4], [11] has mentioned ideas about how to
identify temporal inconsistency. Specifically, these studies
have been limited in their ability to handle obvious cases of
temporal inconsistencies, and their approaches often require
prior knowledge of app samples’ temporal attributes - a
requirement that is often unrealistic in real-world scenarios. In
this work, we develop a novel ML-based approach designed to
effectively identify temporal inconsistencies in Android mal-
ware datasets, which can be applied to any unknown dataset
and has better performance. This approach distinguishes itself
by accurately detecting inconsistencies in unknown datasets
without making unrealistic assumptions about their tempo-
ral attributes. Specifically, our innovative approach employs
machine learning techniques to identify temporal features in
the dataset. We then propose a set of time-sensitive features
that can serve as a foundation for future investigations in this
area. We further utilize a Support Vector Machine (SVM)-
based classifier to examine these features and use the results to
create two distinct metrics for detecting temporal inconsistency
(i.e., a performance-based metric and a feature-importance-
based metric). To evaluate the detection performance of our
approaches, we also introduce a new benchmark dataset
comprising 78,000 diverse Android samples, ranging from
malware to benign applications collected from 2010 to 2022,
specifically designed for the study of temporal inconsistency.
Our experiments demonstrate that our approach can accurately
detect temporal inconsistency in a dataset with an accuracy
rate of up to 98.3%. We found that the composition and size
of the feature set significantly impact temporal inconsistency
detection. When applied to other datasets, our approach still
maintains a high level of performance, demonstrating its
robustness. In this paper, we make the following contributions:

• Dataset: We publish a new dataset for studying temporal
inconsistency in Android malware detection, covering
78,000 malware and benign samples across different
periods.

• Approach: We introduce a novel ML-based approach

for identifying temporal inconsistency in Android mal-
ware datasets, enhancing the accuracy and trustworthi-
ness of ML-based malware detection. We publish the
studied dataset and make it publicly available at https:
//anonymous.4open.science/r/MalwareDetection-B2A2/.

• Evaluation: We provide a comprehensive evaluation of
our method using our new dataset, demonstrating its ef-
fectiveness in addressing temporal inconsistency, setting
a new standard in the field.

II. BACKGROUND

The growing sophistication of Android malware and the
increasing complexity of Android applications underscore
an urgent need for robust and reliable malware detection
techniques. Machine learning-based techniques have shown
great promise in this domain, achieving remarkable detection
performance. However, the effectiveness of these methods
hinges on the quality of the data they are trained on. Prior
studies [3], [4] have proven that it’s evident that certain biases
and inconsistencies within the training data can materially
distort the performance of the models, potentially yielding
misleading or excessively optimistic outcomes.

One such bias, temporal inconsistency, has been identified
as a critical factor that can distort the performance metrics of
these models. Prior studies, such as those conducted by Liu et
al. [4], have proven the extent to which temporal inconsistency
between malware and benign samples can inflate detection
performance. Moreover, they showed that when temporal in-
consistency permeates the data, the models may inadvertently
learn to differentiate samples based on their temporal features,
as opposed to the traits that genuinely differentiate benign and
malicious behaviors. Despite the clear evidence of the impact
of temporal inconsistency, there is currently no established
method to detect and address this issue in biased datasets.
This represents a significant research gap in the field, which, if
filled, could substantially enhance the accuracy and reliability
of ML-based malware detection. To address it, we propose
a novel approach to identify temporal inconsistency for the
Android malware datasets and attempt to answer the following
three research questions:

(RQ1) Can we replicate the impacts of temporal in-
consistency? This research question seeks to demonstrate
the effect of temporal inconsistency on ML-based malware
detection by applying the idea proposed by Liu et al. [4].
We aim to examine whether their ideas could be applied to
temporal inconsistency detection in an unknown dataset.

(RQ2) How effectively can the proposed metrics identify
the temporal inconsistency in biased datasets? The second
research question intends to evaluate the effectiveness of our
proposed metrics in identifying temporal inconsistencies. As
these inconsistencies frequently appear in biased datasets, a
robust testing criterion that can accurately detect them is vital
to ensure the integrity of machine learning-based malware
detection.

(RQ3) How generalizable is our proposed approach? The
motivation for this research question is to evaluate the gen-

eralizability of the proposed approach. Given the constraints
in the volume and diversity of apps available for testing, it’s
critical to assess the robustness of the proposed approach
against datasets beyond those used in its development. This
evaluation will provide valuable insights into the method’s
potential reliability and usefulness in real-world scenarios.

III. STUDY DESIGN

A. Dataset Construction

Our dataset was derived from AndroZoo [12], a large and
comprehensive collection of Android applications, each with
detailed metadata. We collected equal quantities of benign and
malicious Android apps for each year from 2010 to 2022,
amassing 3,000 instances of each annually. This balanced col-
lection strategy, in line with previous studies [13], [14], [15],
helps ensure an unbiased representation of both benign and
malicious apps in our dataset. AndroZoo provides metadata for
each application, including the number of positive detections
(p) by anti-virus programs on VirusTotal [16]. We used this
information to classify applications, with p = 0 indicating
a benign app and p > 4 signifying malware, following
the methodology of earlier research [3], [17]. Finally, our
comprehensive dataset comprises a balanced collection of
39,000 benign and 39,000 malware applications, providing a
robust base for training and evaluating ML models.

B. Data Processing

The raw APK files required transformation into a for-
mat suitable for machine learning models. This process in-
volved extracting relevant information that could differentiate
malware from benign applications. Consistent with earlier
work [14], [4], we used APKtool [18] and Androguard [19] to
decompile the APK files and extract static features, specifically
the invoked API calls and declared permissions. These features
were then converted into binary vector representations using
one-hot encoding. In this schema, the presence of a specific
API or permission in an application is denoted by ’1’ and its
absence by ’0’. For the sake of consistency, all vectors were
made equal in length, matching the total count of unique APIs
and permissions found in the entire dataset. Given the high
dimensionality of the data and the necessity of computational
efficiency during model training and evaluation, we limited the
feature set for each classification task. We chose to incorporate
only the top 2000 most frequently occurring features in the
dataset. This approach allows us to focus on the most pertinent
characteristics without undermining the model’s ability to dis-
tinguish effectively between benign and malware applications.
Our selected features can be accessed in the supplementary
material online.

C. Feature Selection and Construction

1) Feature Importance Assessment: Our methodology starts
with the use of interpretable machine learning models. In
this approach, every feature in the model is characterized by
three properties: its name, its importance, and its ranking. The
feature’s name corresponds to a specific API or permission

https://anonymous.4open.science/r/MalwareDetection-B2A2/
https://anonymous.4open.science/r/MalwareDetection-B2A2/

(e.g., SEND SMS). The importance of a feature is measured
by how much it contributes to the model’s prediction. In our
analysis, we consider the absolute value of the importance
to represent the impact of the feature on the prediction. The
ranking of each feature is sorted according to the absolute
value of its importance.

2) Temporal Feature Extraction: The next step is to extract
time-sensitive features. We use a linear machine learning
model, specifically a Support Vector Machine (SVM), for this
purpose, following in the footsteps of previous research [9],
[3], [20]. We train the SVM classifiers on apps from different
years, ensuring that they are of the same type (either benign
or malicious).

In order to identify time-sensitive features, we label the apps
with the year of their creation. The model’s goal is to correctly
identify the creation year of an app. Given that our dataset
extends from 2010 to 2022, we train the model for each year
difference, resulting in a total of 2∗

∑12
i=1 i = 156 training in-

stances. After each training session, we select the features with
the highest importance, as determined by the feature weight
(ωi) in the SVM model. For each year difference, we derive
two sets of important features — one from the classification
of malicious apps and another from benign apps. The common
set of features is obtained by intersecting these two sets. By
repeating this process for each year difference, we obtain 78
groups of features (156/2), each group corresponding to a
unique year combination. The final feature set is assembled
by merging these 78 groups, producing a set of features that
exhibit temporal inconsistency but do not show malicious
inconsistency (a feature shows temporal inconsistency if it
appears frequently in a malicious dataset but infrequently in a
benign one).

The significance of this process lies in identifying the
features that are crucial for classifying apps from different
years and demonstrate temporal inconsistency. These features
play a key role in distinguishing and understanding the varia-
tions over time in application classification. We find features
with temporal inconsistency by extracting the most important
features from classifications within benign or malicious apps.
After intersecting the important features from both benign
and malicious apps, we can identify those features that are
common to both and do not exhibit a bias towards malicious
behavior.

D. Metrics for Temporal Inconsistency Detection

To identify the temporal inconsistency arising from bi-
ased datasets, we propose two categories of evaluation met-
rics: performance-based metrics, denoted by P , and feature
importance-based metrics, denoted by F .

Within the category P , we have incorporated five dif-
ferent evaluation measures that are pivotal in assessing the
performance of a model: accuracy (PAcc), F1 score (PF1),
recall (PRec), precision (PPre), and the average of these
four metrics, denoted as average performance (PAP). These
diverse metrics facilitate a comprehensive evaluation of model

performance from multiple dimensions, catering to various
aspects of predictive ability.

Under the category F , we have established three distinct
metrics that focus on feature importance within the model and
its collective influence on predictions.

1) Average Feature Importance (FAI): This is the mean
importance across all features. Mathematically, it is
expressed as: FAI =

∑n
i=1 |βi|
n

2) Time-sensitive Feature Importance (FFI): This met-
ric computes the total importance of features within
our specifically defined time-sensitive feature set T ,
as outlined in Section III-C2. It is given by: FFI =∑

fi∈T |βi|
3) Outside Feature Importance (FOFI): To evaluate the

relative impact of features not included in our time-
sensitive set, we introduce this additional metric. It is
computed as: FOFI = 1

|{i:fi /∈T }|
∑

fi /∈T |βi|
4) Time-sensitive Feature Importance and Rank

(FFIR): This metric, based on the feature set T , further
considers the values of importance and rank(mentioned
in Section III-C1), using an appropriate mathematical
model to represent the inconsistency of the feature. The

expression is: FFIR = Sig(
∑

fi∈T m(e/m)−Rie|βi|−1

maxfi∈T m(e/m)−Rie|βi|−1)

Sig(x) = 1−e−x

1+e−x

Within these equations, fi denotes the i-th feature, while βi

and Ri symbolize the significance and ranking of the i-th
feature within the model. Additionally, n and m represent
the total number of features and a constant, respectively. The
sets T and its complement consist of the features within and
outside of our time-sensitive feature set, respectively. These
metrics collectively facilitate a more comprehensive analysis
of feature importance in our model. The output values of these
two types of metrics will be between 0 and 1. To have a
unified standard for predicting bias in unknown datasets, we
need to define a threshold Θ for each metric. When the output
is greater than Θ, it’s considered that the dataset has temporal
inconsistency; otherwise, it’s considered that the dataset is
normal.

IV. RESULT

A. RQ1

We aim to build upon the research conducted by Liu et
al. [4], by replicating their methodology and, in doing so,
affirming the impacts of temporal inconsistency in ML-based
malware detection. Additionally, our goal is to scrutinize the
effectiveness of Liu et al.’s approach in accurately identifying
temporal inconsistencies.
Experiment setup. Adhering to the methodology of Liu et
al. [4], we replicated their experimental steps. Two different
scenarios were tested: the first combined 2010 benign dataset
with each malware dataset ranging from 2010 to 2020, and
the second combined 2010 malware dataset with each benign
dataset from 2010 to 2020. The experiment began with training
and testing our dataset, from which we were able to glean
the accuracy and F1 score. Then we identify the top 10

SMU Classification: Restricted

0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96
0.98
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Co
un
t_
to
p

Year	of	Malware	Samples	with	2010	Benign	Samples

0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96
0.98
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Ac
cu
ra
cy
/F
1	
sc
or
e

Year	of	Benign	Samples	with	2010	Malware	Samples

Accuracy
F1
Added-benign
Added-malware

Fig. 1: Impact of Temporal Inconsistency on Malware and Benign Classification (Replication Results of Liu et al. [4])

most important features. We then delved into the Android
development documentation to identify features that were only
introduced in later versions due to Android API updates, hence
leading to temporal discrepancies between datasets of malware
and benign apps. These Liu et al.term ”added features”.
The final step involved calculating the proportion of samples
containing these added features within the respective malware
and benign apps datasets.
Results. Figure 1 shows the replication results. The left side
presents the classification results of benign apps from 2010
contrasted with malware from 2010 to 2020. Conversely, the
right side shows the results of malware from 2010 compared
with benign apps from 2010 to 2020. It is evident that
the performance of the classifier improved as the temporal
inconsistency increased (i.e., accuracy increases from about
0.45 to 0.95). This finding confirms the impact of temporal
inconsistency in malware detection, in line with the observa-
tions of Liu et al. [4]. Moreover, our results indicated that
the disparity in the proportion of samples containing added
features between benign apps and malware could reflect the
presence of temporal inconsistency.

However, we must acknowledge certain limitations of this
approach. When the temporal bias is relatively minimal (e.g.,
less than 5 years), the ’added features’ method struggles to
provide a clear indication of the extent of temporal inconsis-
tency. Furthermore, this approach assumes that the year of the
dataset is known, enabling the identification of specific added
features. However, in real-world scenarios, the specific year of
a dataset under testing might be unknown, potentially reducing
the effectiveness of this method. At the same time, this
approach often can not identify temporal inconsistency even
if large time span exists. Thus, our findings underscore the
need for developing alternative methodologies to accurately
detect temporal inconsistencies in datasets of indeterminate
chronological origin.

B. RQ2

The main goal of this study is to thoroughly evaluate
the efficacy of the proposed evaluation metrics in accurately
identifying temporal bias within the datasets.
Experimental Setup. We have meticulously constructed an
experiment to effectively illustrate the proficiency of our
proposed method in identifying temporal bias across a variety
of datasets. We employ Support Vector Machine (SVM) as

our classification algorithm, given its robustness and broad
applicability [3], [4].

The dataset we utilized in this study contains Android appli-
cations spanning from the years 2010 to 2022. We performed
permutations and combinations between malicious and benign
applications, labeling the resultant datasets with the magnitude
of their temporal bias. For example, a dataset combining
malicious applications from 2012 with benign applications
from 2015 will have a temporal bias of 3 (2015− 2012 = 3).
This approach allowed us to generate a multitude of datasets
with their respective temporal biases. Datasets with a temporal
bias of 0 were classified as unbiased, while all others were
considered as biased.
A Comparison Analysis of Different Metrics. For each
metric, we generated corresponding box plots (as illustrated
in Figure 2). On these plots, the horizontal axis signifies the
inherent temporal bias of the dataset, while the vertical axis
corresponds to the values yielded by each respective metric.

Upon comparing the two metric categories, we observed that
feature importance-based metrics (F) displayed a considerable
overlap between the box with zero temporal bias and the
other boxes. For instance, the performance-based metric PACC

demonstrated a significant overlap in box plots across temporal
biases of 0, 1, and 2. This overlap, essentially indicating
similar metric values for distinct temporal bias levels, poses
a considerable challenge in distinguishing datasets with zero
temporal bias from those with slight temporal biases. In
comparing the performance-based metrics (P) with feature
importance-based metrics (F), we observed a substantial
overlap in the box plots representing zero temporal bias
and non-zero biases for the feature importance-based metrics.
For example, the box plots for FFI and particularly FFIR,
effectively confined the box representing zero temporal bias to
a very narrow range. This helped in clearly distinguishing it
from the boxes representing non-zero biases. This divergence
underscores the importance of time-sensitive feature sets in
accurately identifying temporal inconsistencies in datasets. For
each metric, we define the upper quartile of outputs from
temporal bias = 1 as Θ.

Table I presents the performance of the investigated metrics
in detecting temporal inconsistencies. Remarkably, FFIR, em-
ploying a more sophisticated mathematical model, achieves the
highest performance. Its superior results suggest its mathemat-
ical model’s increased efficiency in capturing temporal incon-

Fig. 2: Box Plots of the Accuracy of Temporal Inconsistency Detection

Metric Θ Accuracy Recall Precision F1-score

PAcc 0.96 69.8% 84.6% 18.3% 30.1%
PPre 0.96 74.0% 92.3% 21.8% 35.3%
PRec 0.96 72.8% 76.9% 18.9% 30.3%
PF1 0.96 68.6% 84.6% 17.7% 29.3%
PAP 0.96 69.2% 84.6% 18.0% 29.7%
FAI 0.97 59.2% 76.9% 10.6% 18.7%
FFI 8.00 81.6% 100.0% 29.5% 45.6%
FOFI 1.18 65.1% 76.9% 9.62% 17.1%
FFIR 0.27 83.2% 100.0% 31.7% 48.1%

TABLE I: Performance comparison of the two metric categories
for predicting the temporal bias in the dataset. Each metric has an
associated threshold (Θ).

sistencies from feature importances. However, a noteworthy
observation is the relatively low precision across all methods,
which can be attributed to the low proportion of datasets
with a temporal bias of 0 in our dataset. To conclude, our
analysis underscores the effectiveness of feature importance-
based metrics, particularly FFI and FFIR, in identifying
temporal bias.
Enhanced Evaluation. We discerned in the FFIR plot of
Figure 2 that the lower limit of the box corresponding to a
temporal bias of 0 or 1 is considerably low, which contributes
to the observed low precision. This likely stems from the
minimal gap in years between datasets when the temporal
bias is 1 or 2, resulting in fewer or no features with temporal
inconsistency. To substantiate this hypothesis, we identified
the most influential features from some datasets where the
temporal bias equals 1 or 2, and checked their temporal
inconsistency in the Android developer documentation. Our
findings revealed that these datasets infrequently depend on
temporal inconsistency for classification, relying instead on the
inherent properties of the features. Nevertheless, for datasets
with a substantial temporal bias (greater than 3), temporal
inconsistency is a significant factor in classification.

Metric Θ Accuracy Recall Precision F1-score

PAcc 0.96 86.2% 84.6% 42.3% 56.4%
PPre 0.96 91.9% 92.3% 57.1% 70.1%
PRec 0.96 88.6% 76.9% 47.6% 58.8%
PF1 0.96 85.4% 84.6% 40.7% 55.0%
PAP 0.96 85.4% 84.6% 40.7% 55.0%
FAI 0.97 72.3% 76.9% 12.2% 21.1%
FFI 8.00 97.5% 100.0% 81.3% 89.7%
FOFI 1.18 80.1% 76.9% 10.9% 19.0%
FFIR 0.27 98.3% 100.0% 86.7% 92.9%

TABLE II: Performance comparison of metrics for detecting tempo-
ral bias, considering only datasets with a temporal bias greater than
2 as abnormal.

To portray our method’s performance more accurately, we
repeated the experiment excluding datasets with a temporal
bias of 1 or 2, as accurately determining the impact of temporal
inconsistency on such datasets is challenging. In this refined
experiment, we treated datasets with a temporal bias exceeding
2 as those manifesting temporal inconsistency, and only those
with a temporal bias of 0 were deemed as normal datasets.
As evidenced in Table II, our proposed metric FFIR displays
significant superiority in performance over the other metrics.

C. RQ3

Given that the construction of the feature set and the evalua-
tion of method performance both depend on datasets, there is a
potential concern regarding the generalizability of our method
to new datasets when using the same dataset for both purposes.
To mitigate this concern, we will conduct rigorous testing
of our method using previously released datasets, specifically
MalScan [21] and Drebin [9]. This approach ensures a thor-
ough assessment of the effectiveness and robustness of our
method across diverse datasets.
Experimental Setup . For validation purposes, we gathered
the MalScan and Drebin datasets. MalScan comprises both
benign and malicious apps (about 1800 malicious samples

Dataset Output Dataset Output
MalScan2011+Drebin 0.045 AndroZoo2011+Drebin 0.041
MalScan2012+Drebin 0.107 AndroZoo2012+Drebin 0.059
MalScan2013+Drebin 0.177 AndroZoo2013+Drebin 0.173
MalScan2014+Drebin 0.332 AndroZoo2014+Drebin 0.522
MalScan2018+Drebin 0.731 AndroZoo2018+Drebin 0.576

TABLE III: The combination of datasets from different years and
Drebin

and benign samples each year) dating from 2011 to 2018.
From Drebin, we exclusively assembled the dataset (about
5400 samples) of malicious apps from 2010 to 2012. In our
experiment, we mixed the datasets within MalScan, mirroring
the approach detailed in Section IV-B, and employed our
method to predict the temporal inconsistencies across the
datasets. We further mixed those malware apps from Drebin
with datasets (both MalScan’s dataset and our dataset) from
varying years to verify if the prediction outcomes are in line
with the actual facts.
Results. Additionally, as outlined in Section IV-B, we es-
tablished a threshold using our dataset. This threshold will
be consistently utilized not only in this experiment but also
in subsequent ones. To further showcase the efficacy of our
method on novel datasets, we integrated the Drebin malware
dataset from the years 2010 to 2012 with other datasets to
validate if the output values meet our expectations.

Table III shows the result get from combinations of several
datasets and Drebin. The left side represents the combination
of the MalScan dataset and Drebin, while the right side
represents the combination of our dataset and Drebin. The
Output represents the output obtained from these datasets
using our method. Similarly, we use the threshold of 0.27
from Section IV-B. Since the Drebin dataset is from the years
2010 to 2012, whether we use the MalScan dataset or our own
dataset, the output is very small when the year falls within this
range, indicating that the dataset combined in this way has
almost no temporal inconsistency. As the year of the dataset
gradually increases, the output also gradually increases.

V. CONCLUSION

In this paper, we have presented a novel ML-based ap-
proach for detecting temporal inconsistency in Android mal-
ware datasets. Our findings underscore the significance of
addressing this overlooked issue to enhance the accuracy
and reliability of ML-based Android malware detection. Our
proposed method, coupled with the new dataset we introduced,
sets a new benchmark in this field. Our study represents a
significant step towards more reliable and accurate ML-based
Android malware detection. By identifying and addressing
the issue of temporal inconsistency in datasets, we pave the
way for further advancements in this field. Future work could
focus on refining our method further, exploring other potential
biases in Android malware datasets, and developing more
sophisticated mechanisms for bias detection and mitigation.

REFERENCES

[1] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of android malware and android analysis techniques,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, pp. 1–41, 2017.

[2] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep learning
for android malware defenses: A systematic literature review,” ACM
Comput. Surv., vol. 55, no. 8, dec 2022. [Online]. Available:
https://doi.org/10.1145/3544968

[3] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, L. Cavallaro et al.,
“Tesseract: Eliminating experimental bias in malware classification
across space and time,” in Proceedings of the 28th USENIX Security
Symposium. USENIX Association, 2019, pp. 729–746.

[4] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Explainable ai for
android malware detection: Towards understanding why the models
perform so well?” in 2022 IEEE 33rd International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2022, pp. 169–180.

[5] X. Su, W. Shi, X. Qu, Y. Zheng, and X. Liu, “Droiddeep: using
deep belief network to characterize and detect android malware,” Soft
Computing, vol. 24, no. 8, pp. 6017–6030, 2020.

[6] X. Su, D. Zhang, W. Li, and K. Zhao, “A deep learning approach
to android malware feature learning and detection,” in 2016 IEEE
Trustcom/BigDataSE/ISPA. IEEE, 2016, pp. 244–251.

[7] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “{CADE}: Detecting and explaining concept drift samples
for security applications,” in 30th {USENIX} Security Symposium
({USENIX} Security 21), 2021.

[8] M. E. Khoda, J. Kamruzzaman, I. Gondal, T. Imam, and A. Rahman,
“Mobile malware detection: An analysis of deep learning model,” in
2019 IEEE International Conference on Industrial Technology (ICIT).
IEEE, 2019, pp. 1161–1166.

[9] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[10] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE symposium on security and privacy. IEEE,
2012, pp. 95–109.

[11] Y. Zhao, L. Li, H. Wang, H. Cai, T. F. Bissyandé, J. Klein, and J. Grundy,
“On the impact of sample duplication in machine-learning-based android
malware detection,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 3, pp. 1–38, 2021.

[12] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, ser. MSR ’16. New York, NY, USA: ACM, 2016, pp. 468–
471. [Online]. Available: http://doi.acm.org/10.1145/2901739.2903508

[13] H. Alshahrani, H. Mansourt, S. Thorn, A. Alshehri, A. Alzahrani, and
H. Fu, “Ddefender: Android application threat detection using static and
dynamic analysis,” in 2018 IEEE International Conference on Consumer
Electronics (ICCE). IEEE, 2018, pp. 1–6.

[14] A. Bacci, A. Bartoli, F. Martinelli, E. Medvet, and F. Mercaldo, “Detec-
tion of obfuscation techniques in android applications,” in Proceedings
of the 13th International Conference on Availability, Reliability and
Security, 2018, pp. 1–9.

[15] Z. Ren, H. Wu, Q. Ning, I. Hussain, and B. Chen, “End-to-end malware
detection for android iot devices using deep learning,” Ad Hoc Networks,
vol. 101, p. 102098, 2020.

[16] V. VirusTotal, “Virustotal: Free online virus, malware and url scanner,”
2014.

[17] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani,
R. Faizullabhoy, L. Huang, V. Shankar, T. Wu, G. Yiu et al., “Reviewer
integration and performance measurement for malware detection,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2016, pp. 122–141.

[18] R. Winsniewski, “Android–apktool: A tool for reverse engineering
android apk files,” Retrieved February, vol. 10, p. 2020, 2012.

[19] A. Desnos and G. Gueguen, “Androguard-reverse engineering, malware
and goodware analysis of android applications,” URL code. google.
com/p/androguard, vol. 153, 2013.

[20] N. Daoudi, K. Allix, T. F. Bissyandé, and J. Klein, “Lessons learnt on
reproducibility in machine learning based android malware detection,”
Empirical Software Engineering, vol. 26, no. 4, p. 74, 2021.

[21] Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin, “Malscan: Fast
market-wide mobile malware scanning by social-network centrality anal-
ysis,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2019, pp. 139–150.

https://doi.org/10.1145/3544968
http://doi.acm.org/10.1145/2901739.2903508

	Introduction
	Background
	Study Design
	Dataset Construction
	Data Processing
	Feature Selection and Construction
	Feature Importance Assessment
	Temporal Feature Extraction

	Metrics for Temporal Inconsistency Detection

	Result
	RQ1
	RQ2
	RQ3

	Conclusion
	References

