
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 1

Taming Android Fragmentation through
Lightweight Crowdsourced Testing

Xiaoyu Sun, Xiao Chen, Yonghui Liu, John Grundy and Li Li

Abstract—Android fragmentation refers to the overwhelming diversity of Android devices and OS versions. These lead to the
impossibility of testing an app on every supported device, leaving a number of compatibility bugs scattered in the community and
thereby resulting in poor user experiences. To mitigate this, our fellow researchers have designed various works to automatically detect
such compatibility issues. However, the current state-of-the-art tools can only be used to detect specific kinds of compatibility issues
(i.e., compatibility issues caused by API signature evolution), i.e., many other essential types of compatibility issues are still unrevealed.
For example, customized OS versions on real devices and semantic changes of OS could lead to serious compatibility issues, which
are non-trivial to be detected statically. To this end, we propose a novel, lightweight, crowdsourced testing approach, LAZYCOW, to fill
this research gap and enable the possibility of taming Android fragmentation through crowdsourced efforts. Specifically, crowdsourced
testing is an emerging alternative to conventional mobile testing mechanisms that allow developers to test their products on real
devices to pinpoint platform-specific issues. Experimental results on thousands of test cases on real-world Android devices show that
LAZYCOW is effective in automatically identifying and verifying API-induced compatibility issues. Also, after investigating the user
experience through qualitative metrics, users’ satisfaction provides strong evidence that LAZYCOW is useful and welcome in practice.

Index Terms—Software testing, Crowd-based software engineering, Android Fragmentation, Compatibility Issues.

F

1 INTRODUCTION

Fragmentation has long been a severe issue in Android,
causing many compatibility issues that may make apps
crash on users’ Android devices and subsequently lead to
poor user experiences. Indeed, there are a massive number
of Android OS versions and customized ROMs (i.e., cus-
tomized Android firmware by smartphone manufacturers)
available in the market. The heavy fragmentation issues
make it hard for Android app developers to carefully test
their apps w.r.t. compatibility issues across the many differ-
ent Android devices. According to Joorabchi et al. [1], An-
droid device fragmentation is a big challenge for develop-
ment as well as for testing. 76% of their survey participants
(Android mobile app developers) see fragmentation as one
of the most challenging tasks because they have to test their
apps on different OS versions and screen sizes to ensure that
their app works.

Given the fact that Android is an open-sourced frame-
work, which enables device vendors and OS providers
to customize OS versions, it results in a large variety of
customized devices on the market [2]. Unfortunately, the
exponential growth of customized Android frameworks
has led to serious compatibility issues in the Android

• Xiaoyu Sun is with the School of Computing, Australian National
University, Canberra, Australia.
E-mail: Xiaoyu.Sun.IEEE@gmail.com

• Xiao Chen, Yonghui Liu, and John Grundy are with the Faculty of
Information Technology, Monash University, Melbourne, Australia.
E-mail: Xiao.Chen@monash.edu,
yonghui.liu@monash.edu and John.Grundy@monash.edu

• Li Li is with the School of Software, Beihang University, Beijing, China.
E-mail: lilicoding@ieee.org

• Xiaoyu Sun is the corresponding author.

Manuscript received ; revised.

ecosystem, as recently shown [3]–[8]. For example, Liu et
al. [3] demonstrate that the textual merge conflicts may
introduce compatibility issues to customized OS versions.
Cai et al. [4] further experimentally claim that the diver-
sification of Android devices is one of the primary causes
of incompatibility issues in Android. As a consequence, the
productivity of app developers can be heavily impeded as
they have to test functions on as many devices as possible to
ensure no incompatibility issues that may cause poor user
experiences. Theoretically, developers should physically col-
lect devices with different brands, models, SDK versions,
software/hardware configurations, etc. However, having
dedicated devices covering all specifications for each app
developer is not practical. In addition, it is time-consuming
for app developers to integrate the process of incompatibil-
ity testing into their daily continuous integration workflow.
Therefore, we argue that there is a need to tame Android
fragmentation issues in a lightweight crowdsourced man-
ner.

To the best of our knowledge, at the moment, state-of-
the-art works detect compatibility issues mainly through
static analysis techniques [7], [9]–[12]. For example, Li et
al. [11] present a static approach called CiD that models the
evolution of Android APIs and inspects app bytecode to
detect the misuses that may cause incompatibility issues.
However, static approaches are known to suffer from a
high false positive rate as it has to accept trade-offs to
obtain relatively good results. In addition, static techniques
may be susceptible to sophisticated programming features
(e.g., reflection, obfuscation, and hardening) [13], harm-
ing the soundness of these approaches. Furthermore, static
techniques are reported to only be effective in detecting
specific types of compatibility issues [14] (i.e., compatibil-
ity issues caused by syntactic changes), leading to other

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2

complicated types of compatibility issues uncovered. For
example, according to Sun et al. [15], CiD is unable to handle
compatibility issues that are triggered by semantic changes.
Moreover, compatibility issues could also be introduced by
the customization of Android OS, which is non-trivial to
be detected statically. To mitigate this problem, we propose
a lightweight crowdsourced platform to automatically dis-
tribute tests across real-world devices so that we are able to
detect a wider range of compatibility issues by taking the
advantage of dynamic testing.

In this work, we present a lightweight crowdsourced
testing framework, LAZYCOW, that attempts to automati-
cally distribute and run collected test cases on real-world
devices to trigger compatibility issues dynamically. Being
“lightweight”, it means that we want to directly dispatch
and execute relevant test cases to crowdsourced devices,
instead of dispatching executable Android apps as is usu-
ally done in the state-of-the-art approaches. Compared
with traditional crowdsourced app testing, we believe our
lightweight approach can bring the following key benefits:
(1) Reducing bandwidth so that will only have minimal
impact on users’ everyday activities when using the phone.
(2) Diminishing users’ awareness about the crowdsourced
testing as the testing app only needs to install once (i.e.,
the first time, after that, only test cases will be dispatched).
(3) Allowing flexibility and hence can easily achieve on-
demand testing and continuous testing. In LAZYCOW, only
a certain number of test cases will be dispatched and
executed based on the smartphone’s running status. New
test cases can also be continuously loaded and executed
when the smartphone becomes idle for a period of time.
(4) Guarantee full test case execution as each test case is
specifically designed to test the target APIs (e.g., it does not
involve complicated logic to reach the APIs). This is unlike
testing a whole app, where there is often a challenge to cover
all the app code under testing.

To the best of our knowledge, no approaches have
yet been developed that use the concept of lightweight
crowdsourced app testing.We propose in this work a novel
lightweight crowdsourced testing approach, LAZYCOW, to
fill this gap and to enable the possibility of taming Android
fragmentation through crowdsourced efforts. To do this we
designed and implemented a prototype tool called LAZY-
COW, which leverages a client-server platform to achieve
the purpose, of distributing test cases to crowd-sourced
smartphones for checking potential compatibility issues.
The LAZYCOW client app needs to be installed on Android
users’ devices. It aims to determine a suitable time when
the device is in an idle state to (1) interact with the server
for requesting (new) test cases, (2) execute the test cases,
and (3) send the execution results to the server app for
further analysis. By testing the test cases extracted from
the official Android framework and 1,000 random Android
apps with LAZYCOW, we successfully detect 393 APIs that
have compatibility issues. After manual validation, we con-
firm that all detected issues are true positives, suggesting
a 100% true positive rate. Additionally, we find that 109 of
them are Signature-based issues, while 284 are Semantics-
based issues and cannot be noticed by state-of-the-art static
methods. Also, we identify that 161 and 47 compatibility
issues are vendor- and model-specific, respectively, which

System Apps

Java API Framework

Native Libraries Android Runtime

Hardware Abstraction Layer

Linux Kernel

Fig. 1. The Android system architecture.

are introduced when smartphone vendors customize the
Android system. Such vendor/model-specific compatibility
issues may introduce severe security problems.

We make the following key contributions to this work:
• New technique. We have designed and implemented a

lightweight prototype tool, LAZYCOW, which leverages
crowdsourced testing techniques to automatically dispatch
and execute test cases on Android devices for identifying
fragmentation-introduced compatibility issues.

• New discoveries. We have demonstrated the effectiveness
of LAZYCOW by dispatching and executing thousands of
test cases on real-world Android devices. The experimen-
tal results reveal semantic compatibility issues (including
vendor/model specific issues), which are overlooked by
state-of-the-art approaches.

• LAZYCOW is demonstrated to be useful in practice based
on the positive feedback given by real-world Android
users. The high satisfaction score suggests most users are
happy with the performance of LAZYCOW in terms of
simplicity, satisfaction and adoption willingness.

The source code of both client side1 and server side 2 are
all made publicly available in our artifact package.

2 BACKGROUND AND MOTIVATION

2.1 Android Fragmentation and Google CTS

Although Android offers device vendors and OS providers
an open and flexible software architecture that allows them
to swiftly launch their Android device products, it com-
plicates the work of app developers to tolerate sophisti-
cated variability in customized OSs and produce compatible
Android applications on diverse device models. Due to
various customized Android OS versions, Android frag-
mentation is becoming a notorious issue, which stems from
the necessity to accommodate the proliferation of multiple
Android devices with varying software and hardware envi-
ronments [16]. Specifically, the root causes of fragmentation
issues can be summarized into the following two categories:
• The evolving of Android Framework. As the Android

operating system evolves and releases new versions each
year, its API specifications rapidly change syntactically and
semantically, leading to compatibility issues [1], [17], [18].
Specifically, a significant proportion of APIs is available
only on a few API levels, mainly because they are removed
from certain SDK versions or because their implementation

1. https://github.com/sunxiaobiu/LazyCow
2. https://github.com/sunxiaobiu/RemoteTest

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 3

changes semantically [11]. As a result, devices associated
with different OS versions may suffer from API-level com-
patibility issues.

• Diverse Device Models. Android device vendors continue
to release new device models with various hardware (e.g.,
varying screen sizes, camera quality, and sensor composi-
tions) and customized OS versions to meet market needs.
Specifically, they tend to customize the source code of the
Java API framework (as shown in Figure 1) to meet the
requirements of different device models. Sometimes, de-
vice vendors even programmatically revise the hardware
abstraction layer (in Figure 1) to satisfy special needs [19].
Such customisation is blamed to cause device-specific com-
patibility issues, which are regarded as non-trivial to be
detected in practice.

To mitigate the impact of the fragmentation issues,
Google, the main contributor of Android, has proposed
to the community a Compatibility Test Suite (hereinafter
referred to as CTS) [20], which is a free, commercial-grade
test suite. This test suite contains thousands of test cases
targeting different compatibility issues, which may be en-
countered by given Android apps when running on certain
Android devices.

However, CTS is known to be incomplete [21] and inef-
fective in detecting compatibility issues. On the one hand,
the test cases included in CTS may not be adequate to help
in identifying all the possible compatibility issues. Certain
compatibility issues may have been overlooked, especially
those caused by OS evolution. Park et al. [22] reveal that
in practice, fragmentation issues remain in Android de-
spite applying CTS testing. The primary reason is that the
criteria for passing the compatibility test suite have not
been specified completely. Specifically, CTS only checks for
incompatibility among devices, not applications, so in the
current status, CTS cannot be utilized in app development.

On the other hand, the CTS is often only applied be-
fore the release of Android devices. However, the Android
system keeps evolving; hence compatibility issues could be
introduced after the devices’ release, which has been experi-
mentally confirmed by our fellow researchers [7], [11], [23],
[24]. Moreover, CTS is designed only for device manufactur-
ers who normally execute test suites on the application level.
However, compatibility issues are reported to frequently
appear at the API level, indicating that the execution of CTS
is not sufficient to trigger compatibility issues completely.
Furthermore, CTS is practically too heavyweight for app
developers to integrate into their version-update workflow.
App developers must guarantee that their apps are compat-
ible with a variety of device models and support various
OS versions as well. This takes a substantial amount of
testing and diagnosis. In practice, it is extremely hard for
developers to thoroughly test a piece of code (i.e., unit test)
on all possible combinations of device models and Android
OS versions.

To this end, we are motivated to provide a lightweight
approach to dispatch test cases on real-world devices so as
to detect a wider range of compatibility issues.

2.2 Crowdsourced Android App Testing
Crowdsourced testing has been a hot research topic for
many years [25]–[27]. It has also been applied to the An-

droid field, e.g., to achieve crowdsourced app testing. For
example, on the industry side, the company Global App
Testing [28], a leading end-to-end functional testing com-
pany, provides access to global testers to execute tests on
real devices manually. Such a strategy enables their cus-
tomers to reduce the time and effort of finding the bugs
with the help of professional testers around the world.
Other popular crowdsourced testing companies, such as
Digivante [29], test IO [30], and QA Mentor [31] provide
similar crowdsourced testing services, enabling users(e.g.,
app developers) to test their mobile apps with thousands
of professional testers. Unfortunately, all these state-of-the-
practice approaches have crowd workers involved, which
means none of them can automatically tame Android frag-
mentation in a lightweight way (i.e., without human inter-
vention). Furthermore, users (e.g., app developers) cannot
customize test scripts to meet their particular needs, leading
to certain types of incompatible issues undetected.

On the other hand, crowdsourced app testing has also
grown as a trend in academia [32]–[37]. For example, Wu et
al. [32] present an approach to record the user interactions
and then replay them on devices through a crowdsourced
testing service. However, they generate test scripts using
the record/replay technique, which is time-consuming as
real users’ interactions with apps are involved. Li et al. [34]
further develop a platform, CoCoTest, which exploits the
concept of collective intelligence to recommend bug reports
to the workers. Unfortunately, this approach can be ineffec-
tive since crowd workers tend to submit low-quality bug
reports.

To sum up, all the state-of-the-art crowdsourced test-
ing platforms involve human intervention, which is time-
consuming and error-prone (human intervention can be
heavily affected by different levels of professionalism). Gen-
erally speaking, crowdsourced app testing has mainly been
applied to test the whole Android app on crowdsourced
devices. This approach shares the drawback of dynamic
app testing, i.e., it cannot easily cover (hence explore) all
the app code. Our community has never explored the pos-
sibility of distributing test cases (i.e., directly executable
code snippets) to real-world Android devices. This evidence
motivates us to present a platform to automatically generate
and distribute tests on real-world devices without human
intervention to automatically detect Android compatibility
issues.

3 OUR APPROACH

Motivated by the above-mentioned drawbacks of CTS and
existing crowdsourced testing platforms, we propose a new
lightweight crowdsourced dynamic testing approach. We
aim to help the community defend against possible com-
patibility issues caused by the fragmentation problem of the
mobile ecosystem.

Why lightweight? First, our approach is lightweight
since we apply crowdsourced testing for test cases only. Un-
like traditional Android app crowdsourced testing, which
often dispatches executable Android apps to global testers,
we dispatch single test cases (i.e., each containing only a
small piece of code snippets) to detect API-level compat-
ibility issues. Our lightweight approach saves significant

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 4

bandwidths when transferring the test objects to client de-
vices, e.g., an Android app can be at least several megabytes
(and could be even hundreds of megabytes), while a test
case will only be a few bytes. Furthermore, it is also non-
trivial to thoroughly test an Android app, although it is
straightforward to trigger a single test case. Indeed, the
state-of-the-art automated app testing approaches are still
not mature enough to achieve a high testing coverage.
As such, the targeted code in the dispatched app could
not even be reached, resulting in not only heavy but also
poor crowdsourced testing results. Moreover, dispatching
a whole app for crowdsourced testing may also increase
the possibility of including malicious payloads, which could
threaten the security of the users and, in turn, discourage the
adoption of this kind of crowdsourced testing approach.

In this work, instead of carrying out testing as a whole
integrated package and involving human intervention, we
resort to a lightweight crowdsourced testing approach
to achieve our objective. Our approach provides a more
promising way by using a dispersed strategy to dispatch
test cases (rather than whole Android apps) to be directly
executed on diverse real-world Android devices. Crowd-
sourced testing offers Android developers an opportunity
to have their customized test cases to be tested by real users
on real devices across the globe, ensuring a customer-centric
emphasis.

Why Dynamic Testing? While fragmentation has been
a severe issue in the Android ecosystem, there have been
several works [8], [11], [38] proposed for taming Android
fragmentation issues through static analysis. However, static
analysis approaches are known to lack concrete evidence
to confirm these issues on real-world devices. It is also
difficult for static analysis approaches to observe code’s
semantic changes, for which the aforementioned approaches
have overlooked. For example, APIs with semantics-based
compatibility issues (i.e., have the same signature but dif-
ferent implementation) may evolve and contradict with
developer’s initial expectations.

We now present a concrete example to demonstrate
why static methods are insufficient to identify compatibility
issues, so as to better motivate our work. An Android
API called android.app.usage. NetworkStatsManager #query-
Summary suffers from both signature and semantic compat-
ibility issues. The test case throws NoClassDefFoundError on
SDK version 21 and 22, throws SecurityException on SDK
version 24, while successfully executed on SDK version 25
to 30. Through in-depth analysis, we find that the class
NetworkStatsManager and the API were both first introduced
at API level 23, and it requires permission PACKAGE US-
AGE STATS to access only at API level 23. However, from
API level 24, this API no longer requires permission to
access, leading to semantic compatibility issues. It is non-
trivial to examine if there is a compatibility issue after API
level 23 by only statically looking at the Java code of the
framework. The state-of-the-art static analysis tool CiD [11]
fails to detect such semantics changes because it only ex-
amines the change of API signatures (including name, type,
and parameters). As a result, it leads to many false negatives
caused by imprecisely extracting the implementations of the
APIs. To that end, we resort to a dynamic crowdsourced
approach to dispatch and execute the target API on real-

world Android devices to examine the compatibility issues
based on its runtime behaviours.

4 ARCHITECTURE OF LAZYCOW
Server

(4) Test Case Collection

(5) Device Registration

(6) Test Case Allocation

(7) Test Case
Packaging & Dispatch

(8) API Compatibility
Analysis

Client

����Device State Monitor

����Test Cases Hotfix

����Test Case Execution
& Results Recording

Test Case Database

Compatibility Issues Report

Users

Install LazyCow

Android OS

Fig. 2. The working process of our approach.

The main goal of our work is to provide a lightweight
crowdsourced testing platform for automatically dispatch-
ing and executing unit tests on various real-world Android
devices. To that end, we design and implement a prototype
tool called LAZYCOW for achieving this purpose. Figure 2
illustrates the architecture of LAZYCOW and it works in
a client-server model. The client is installed on various
android devices and manages the execution of test cases.
Specifically, it determines the time and number of test cases
to be executed and sends the testing results back to the
server for further analysis. The server manages the collec-
tion of test cases, packaging and dispatching of test cases
to the clients, and analyzing the compatibility issues based
on the results collected from various devices. We elaborate
on the detailed process of each component in the following
subsections.

4.1 Client Side
We developed a LAZYCOW client app to be installed on
Android devices. The client monitors the status of the device
to determine the suitable time (e.g., when the device is
not in use) to run the test cases. It then interacts with the
server to download and execute the test cases and return
the execution results to the server. As shown in Figure 2,
the client consists of three modules, namely (1) Device State
Monitor, (2) Test Cases Hotfix, and (3) Test Cases Execution &
Results Recording.

(1) Device State Monitor. In order to not disturb the
users’ experience, LAZYCOW monitors the state of the de-
vices to determine a suitable time to run the test cases. In
this work, our definition of a suitable time is the moments
that satisfy the following three conditions:
i Phone State: We use android.os.PowerManager#isDeviceId

leMode and android.os.PowerManager#isScreenOn to check if
the user is interacting with the device. We consider it a
suitable time if the user is not interacting with the device.

ii Memory Usage: We use android.app.ActivityManager#get
MemoryInfo to grasp the memory usage of the device. If it
is lower than 25%, we consider it a suitable time.

iii Battery State: We use android.os.BatteryManager to check
the battery state to see if it is charging and has sufficient
battery life (e.g., above 60%).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 5

Once a suitable time is detected, the client initiates a
request to the server to download the test cases for testing.

(2) Test Cases Hotfix. In order to dynamically dispatch
incremental tests on Android devices without app rein-
stalling, we resort to hot-fix technique that supports class,
so File and resources updated with the least amount of
impact to the user experience. We start by investigating the
state-of-the-practice hotfix solutions [39]. Specifically, there
are several hotfix tools on the market, the most well-known
of which are Tinker, AndFix, Robust, and QZone. To select
the most suitable one, we compared their advantages and
disadvantages, which are shown in Table 1.

Classes.dex

Base APK

Classes.dex

New APK

patch.dex

Classes.dex

Classes.dex

Base APK

Fig. 3. The repair principle of Tinker.
In summary, AndFix and Robust are incapable of doing

class/variable replacement, which is what LazyCow mainly
asked for. Besides, they do not support the Gradle build tool,
which is a necessity for building android applications. In
terms of QZone, although it is capable of replacing classes,
its greatest disadvantage is the performance problem caused
by Dalvik instrumentation. In other words, QZone would
significantly increase the memory usage and power con-
sumption of the user’s phone. To this end, compared our
needs to other hotfix tools, Tinker is the better choice that
supports class replacement with smaller performance loss.

LAZYCOW integrates Tinker [40], a hotfix solution when
downloading test cases from the server. Tinker supports
DEX, libraries, and resource updates without reinstalling
the APK, which has minimal influence on the users when
updating incremental test cases. The repair principle of
Tinker is based on class loading, and it supports the re-
placement and addition of classes and resources in terms
of functions. The figure 3 describes the repair principle of
Tinker, mainly based on the DEX subcontracting scheme and
uses the principle of multiple DEX loading. After comparing
the differences between the new APK and the base APK,
the updated classes and resources are merged into a file
patch.dex. Then, the patch.dex is combined with the applied
classes.dex, and then replace the old DEX file as a whole to
achieve the purpose of the hotfix.

According to the idea of replacing the new Dex with
the full amount of instant run, we decided to package the
test cases into the dex files of an APK. Specifically, during
the process of hotfixing, the differences between the old
and new test cases are calculated and placed into the patch
package, which is then synthesized to the device for hot
update. Following that, incremental test cases in the patch
package would be put in the directory beneath Tinker. Then,
based on the principle of hotfixing, Tinker’s Classloader is
able to load new test cases in the patch package.

(3) Test Cases Execution & Results Recording. After

TABLE 1
The comparison results between the state-of-the-practice hotfix tools.

Tinker QZone AndFix Robust
Class Replacement yes yes no no
So File Replacement yes no no no
Resource Replacement yes yes no no
Full Platform Support yes yes yes yes
Effective Immediately no no yes yes
Performance Loss small large small small
Patch Size small large medium medium
Transparent Development yes yes no no
Complexity low low high high
Gradle Support yes no no no
Rom Size large small small small
Success Rate high high medium highest

test cases are downloaded to the client devices, LAZYCOW
leverages reflection calls to retrieve all the test cases in the
DEX files and execute them sequentially. Since the test cases
are written in the format of the Java Unit test, LAZYCOW
automatically runs test cases based on the annotation of each
test method.

JUnit [41] is the most recommended unit testing frame-
work in Java. There are 5 annotations for test execution
callbacks in JUnit:@BeforeClass, @Before, @Test,@After, @Af-
terClass. Specifically, the test methods are annotated by the
@Test annotation. In addition, it also supports to constrain
the execution flow of certain methods. For instance, to
define a method to be executed before (or after) the test
methods with the @Before (or @After) and @BeforeClass (or
@AfterClass) annotations. To that end, LAZYCOW firstly
conducts a static analysis to resolve the annotations from
each method. Then, LAZYCOW leverages reflection call to
invoke methods in the sequence of @BeforeClass → @Before
→ @Test → @After →@AfterClass.

After executing the test cases, LAZYCOW uses a try-catch
block to handle the exception that may occur. LAZYCOW
collects the execution result whenever the test case fails or
succeeds, with relevant information (e.g., the stack trace
information when a test failed) and sends it back to the
server for further analysis.

4.2 Server Side

The server maintains a test case database that is expected
to be collected from various sources (e.g., AOSP codebase
[42], Github app code repositories, etc.). These test cases are
packaged and dispatched to the registered clients in a load-
balancing manner. After finishing executing the test cases
on the client devices, the server gathers the outputs for
further analysis to identify potential compatibility issues.
As demonstrated in Figure 2, the modules on the server
side include (4) Test Cases Collection, (5) Device Registration,
(6) Test Cases Allocation, (7) Test Cases Packaging & Dispatch,
and (8) API Compatibility Analysis.

(4) Test Case Collection. The server maintains and con-
tinuously updates a database of test cases to be tested on
the client devices. The test cases can be collected from the
following three sources:
• The test cases included in the Android Open Source Project

(AOSP) codebase [42], which are written by Android OS
developers.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 6

• The test cases generated by automatic test case genera-
tion tools, such as JUnitTestGen [15], which mines the
API usage to generate unit test cases for pinpointing
compatibility issues. According to Sun et al. [15], generic
test case generation approaches (such as EvoSuite [43])
are aimed at generating tests for classes (not at the API
level), and they have been demonstrated as insufficient in
pinpointing compatibility issues because of the lack of API
usage knowledge. To this end, given that LAZYCOW is also
tailored for detecting compatibility issues, JUnitTestGen
has been selected because it is the more suitable one that
outperforms EvoSuite in generating tests for compatibility
testing.

• LazyCow users can also write custom test cases to meet
their particular needs. For example, in the daily continuous
integration of app development, app developers may want
to check if a certain API involves compatibility issues on
specific Android devices.

(5) Device Registration. The client registers itself with
the server once the LAZYCOW client app is installed. The
device information, such as the manufacturer and model
of the device, SDK version, device language, and device
screen size, will then be recorded for optimizing the test
case dispatch process. Note that LAZYCOW does not collect
personal private data such as device ID, but instead assigns
each device a unique ID.

(6) Test Case Allocation. To allocate test cases in a load-
balanced way across all available registered devices, we
design a test case allocation algorithm to determine the test
cases to be assigned to different devices. Figure 4 describes
the process of test case allocation with a load-balancing
strategy. Specifically, LAZYCOW first classifies registered
devices into device clusters based on the device informa-
tion, such as the device’s manufacturer, the device’s model,
the Android SDK version, etc (e.g., Android devices with
Brand Huawei, Model VOG-L09 and API level 28 would be
collected and assigned to the cluster 1). Each cluster will
include all devices with the same specifications. The test
cases are then equally assigned to all devices in each cluster.
By doing so, we make sure that each test case is executed
on as many devices with different specifications, and no test
cases are redundantly executed (or only be executed in a
limited number explicitly specified) on the devices with the
same specifications.

1 @RunWith(AndroidJUnit4.class)
2 public class TestCase_Example {
3 @Test
4 public void testCase() throws Exception {
5 Context var2 =

InstrumentationRegistry.getTargetContext();
6 String var3 = var2.getString(2131558623);
7 CharSequence var1 = (CharSequence)var3;
8 NotificationChannel var4 = new

NotificationChannel("Reminder", var1, 4);
9 String var5 = new String();

10 var4.setDescription(var5);
11 }
12 }

Listing 1. An Example of test cases for API NotificationChannel.
setDescription(String).

In addition, we provide a concrete test case example (as
shown in Listing 1) for better comprehensibility. This test
case is generated by JUnitTestGen and is specifically de-
signed to test API NotificationChannel.setDescription(String)
at line 10. With the help of LazyCow, this test case would

be allocated and dispatched to various device clusters for
compatibility issues testing.

Device Pool .
.
.

Cluster 2: Xiaomi; Redmi 8A; 29

Cluster 1: HuaWei; VOG-L09; 28

Cluster N: Samsung; SM-A305YN; 30

…

X number of Test Cases

X/n X/nX/n
1 2

…

X number of Test Cases

X/n X/nX/n
1 2

…

X number of Test Cases

X/n X/nX/n
1 2

n

n

n

Fig. 4. Test case allocation with the load-balancing strategy.
(7) Test Case Packaging & Dispatch. Once the test cases

to be run on each client are assigned, LAZYCOW pack-
ages and dispatches the test cases to corresponding clients.
LAZYCOW integrates hot-swap technique [44] to apply code
changes (i.e., assigned test cases) to the client without re-
installing the LAZYCOW app. To achieve this, we monitor
file (i.e., test cases) changes and run a custom Gradle task to
generate .dex files for the modified classes only. After that,
another Gradle command was used to generate the newly
.dex files and package them into an APK and then send
the APK back to the client. LAZYCOW client is then able to
reload these newly assigned test classes and invoke them by
using reflection calls.

(8) API Compatibility Analysis. After the test cases
have been executed on various Android devices, LAZYCOW
collects all the execution results from the clients and stores
them in a database. LAZYCOW records if each test case is
successfully executed on the device, and if not, the cor-
responding exception information or error messages (e.g.,
Assertion error message) are also recorded.

The API Compatibility Analysis module then evalu-
ates the results across all devices to identify API-induced
compatibility issues. We consider an Android API has a
compatibility issue if its execution results are inconsistent
on different Android devices. To be more specific, a given
Android API is deemed to have a compatibility issue if
any of the following happens: (1) One test case fails on
certain devices but runs successfully on others; or (2) The
test case throws different errors or exceptions on different
device configurations (e.g., throws NoSuchMethodError on
some versions, while throws SecurityException on others).
Based on the comparative analysis results, LAZYCOW can
flag vendor-specific, model-specific, and Android version-
specific compatibility issues for Android APIs, which have
been long-time challenges that are not yet resolved by exist-
ing approaches proposed specifically to detect compatibility
issues in Android devices (such as CiD, FicFinder, etc.).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 7

5 EVALUATION

We investigate the feasibility and effectiveness of detecting
compatibility issues in Android devices with LAZYCOW by
answering the following research questions:

• RQ1: How efficient is LAZYCOW in supporting
crowdsourced unit testing?

• RQ2: How effective is LAZYCOW in discovering
fragmentation-induced Compatibility Issues?

• RQ3: How does LAZYCOW compare with existing tools in
detecting compatibility issues?

• RQ4: Is LAZYCOW useful in practice from users’ perspec-
tive?

5.1 RQ1 – How efficient is LazyCow in supporting
crowdsourced unit testing?

TABLE 2
Device Information.

ID Brand Model API Level SoC
1

Samsung
SM-A305YN 30 exynos7904

2 SM-A520F 26 exynos7880
3 SM-A705YN 29 qcom
4

Huawei
VOG-L09 28 kirin980

5 HMA-L29 29 kirin980
6 JKM-AL00b 28 kirin710
7 Xiaomi Redmi 8A 29 qcom
8 MI 8 UD 29 qcom
9 OnePlus ONEPLUS A3010 28 qcom
10 Honor COL-AL10 29 kirin970
11 Meizu Meizu 17 30 qcom

5.1.1 Experimental settings

Keeping in mind that the LAZYCOW runs the test cases
when the devices are idle, hence, instead of loading all
the test cases to the devices and executing them at one
time, we designed different allocation strategies to build and
dispatch test cases to the devices in batches. The allocation
strategy specifies the following two factors that may affect
the efficiency of LAZYCOW: the size of each batch (i.e., the
number of test cases built and dispatched every time) and
the crash handle approach (i.e., how the remaining test cases
handled when a crash occurs in a batch).

In this experiment, we vary the batch sizes to 100, 500,
and 1000 to explore the impact of batch size on the execution
efficiency of LAZYCOW. For the crash handling approach,
we propose two strategies when a crash happens in a batch,
namely the Rebuild Strategy and the Discard Strategy. In the
Rebuild Strategy, LAZYCOW rebuilds the unexecuted test
cases into the next batch. In the Discard Strategy, LAZYCOW
discards the remaining test cases in a batch when a crash
occurs and will restart, when available, by executing the
next batch. For example, assume a batch size of 1000 is
chosen. When a crash happens in the 10th test case, the
Rebuild Strategy requests the following 1000 test cases from
the 10th case (i.e., from 11th to 1010th test cases) as a new
batch, while the Discard Strategy skips the 990 test cases
that are unexecuted and requests a new batch containing
the 1001st to 2000th test cases. Intuitively, the rebuild strat-
egy may increase the execution rate of the test cases but
introduce additional overhead in building the test cases. In
contrast, the discard strategy may skip some test cases but
not introduce additional building and execution costs.

We use 11 Android smartphones from various manufac-
turers with different Android OS versions in the experiment.
These 11 devices are not selected by the authors but came
from real-world users. Specifically, we advertised LazyCow
online and recruited Android users to download and install
LazyCow on their devices. In total, we recruited 11 partic-
ipants and thus had 11 Android devices involved in this
work. As part of our future work, we plan to recruit further
users with different devices to detect more compatibility
issues. Table 2 summarises the detailed device information,
including brand, model number, Android API level, and
SoC (system-on-a-chip).

We prepare a set of test cases to evaluate the efficiency
of LAZYCOW. We collect test cases by two means: (1) As-
sembling unit tests from the Android Open Source Project
(AOSP) codebase; (2) Using the tool JUnitTestGen [15] to
automatically generate test cases through mining existing
API usages in real-world apps. Briefly, this tool applies inter-
procedural data-flow analysis to identify the API usage,
including API caller instance inference and API parameter
value inference. In terms of test case generation, we ran-
domly select 1,000 apps from AndroZoo [45] for each target
SDK version (as specified in the manifest) between 21 (i.e.,
Android 5.0) and 29 (i.e., Android 10.03). Here, we select
1,000 apps for each target SDK version because compatibil-
ity issues mainly lie in the evolution of APIs on different An-
droid SDK versions [11]. In addition, JUnitTestGen performs
static program analysis to automatically generate test cases
from existing API usages in real-world apps. Although the
test cases are generated based on API usage, the output of
JUnitTestGen are minimal executable code snippets, which
are also regarded as test cases. Following the step of test
cases collection, we notice that for a given target API,
multiple test cases can be generated based on its various
usages in real-world apps. However, it is time-consuming
to execute all test cases that share the same target API.
Thus, it is necessary to filter them out to save subsequent
testing time and resources. Here, we first obtain the API
invocation sequence for each test case and then select the
smallest-scale one, which has the least number of API invo-
cation sequences. Specifically, a Java-written script has been
applied to this process, enabling an automatic approach
without any human intervention and and with limited time
consumption. In total, we successfully collected 5,401 test
cases (covering 5,401 unique Android APIs), including 1,203
from AOSP codebase and 4,198 generated by JUnitTestGen.

To investigate LAZYCOW’s efficiency of dispatching and
executing unit tests, we install LAZYCOW on all the devices
and then test it across different allocation strategies. For
each run, we record the number of successfully executed
test cases and the execution time for evaluation. Note that
we consider a test case is successfully executed if it is
successfully invoked, regardless of the execution results
(e.g., exception or crash).

5.1.2 Results
Table 3 demonstrates the coverage and time overhead of ex-
ecuting test cases under different allocation strategies. When
increases the batch size from 100 to 500, the number of

3. The latest version at the time when we conducted this study.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 8

TABLE 3
Experimental results of the executed test cases on different allocation strategies.

Batch Size Discard Strategy Rebuild Strategy
Avg. Executed Cases (coverage) Avg. Execution Time Avg. Executed Cases (coverage) Avg. Execution Time

100 5,008 (92.7%) 4,147s 5,339 (98.9%) 9,045s
500 4,884 (90.4%) 1,081s 5,183 (96.0%) 2,110s

1,000 4,479 (82.9%) 825s 5,091 (94.3%) 1,499s

TABLE 4
Experimental results of the executed test cases for each device under

batch size 100.

Device ID # Executed # Execution Executed Execution
Cases (D) Time (D) Cases (R) Time (R)

1 4,629 5,783s 5,247 7,681s
2 5,363 2,717s 5,368 7,043s
3 4,524 7,284s 5,374 10,687s
4 4,894 2,981s 5,364 5,957s
5 5,174 5,754s 5,374 10,353s
6 5,023 2,931s 5,180 8,887s
7 4,395 3,232s 5,374 10,983s
8 5,373 3,802s 5,374 8,999s
9 5,147 2,534s 5,360 5,898s
10 5,374 6,456s 5,374 14,018s
11 5,191 2,147s 5,342 8,988s

TABLE 5
Experimental results of the executed test cases for each device under

batch size 500.

Device ID # Executed # Execution Executed Execution
Cases (D) Time (D) Cases (R) Time (R)

1 4,831 1,544s 5,346 1,326s
2 5,042 652s 5,042 978s
3 4,929 1,375s 5,373 1,794s
4 4,518 626s 4,928 2,702s
5 5,374 1,216s 5,097 3,041s
6 5,080 574s 5,032 1,795s
7 4,873 2,340s 5,374 1,701s
8 5,374 691s 5,374 2,740s
9 4,267 641s 4,735 1,123s
10 4,929 1,646s 5,374 2,714s
11 4,507 584s 5,343 3,301s

TABLE 6
Experimental results of the executed test cases for each device under

batch size 1000.

Device ID # Executed # Execution Executed Execution
Cases (D) Time (D) Cases (R) Time (R)

1 3,802 992s 5,346 970s
2 5,041 895s 5,043 983s
3 4,392 851s 5,374 974s
4 4,031 698s 4,598 1,303s
5 5,374 755s 5,374 1,314s
6 5,050 847s 5,139 979s
7 4,334 1,115s 5,374 1,792s
8 5,374 566s 5,374 2,765s
9 3,715 965s 3,659 1,307s
10 5,374 859s 5,374 1,240s
11 2,787 533s 5,345 2,864s

successfully executed test cases on each device decreases
slightly, from 5,008 to 4,884 (with coverage decreases from
92.7% to 90.4%) on the Discard strategy, and from 5,339 to
51,83 (with coverage decreases from 98.9% to 96.0%) on
the Rebuild strategy. However, the time overhead reduces
dramatically from 4,147 seconds (i.e., 0.83 seconds per case)

to 1,081 seconds (i.e., 0.22 seconds per case) on the Discard
strategy and 9,045 seconds (i.e., 1.69 seconds per case) to
2,110 seconds (i.e., 0.41 seconds per case) on the Rebuild
strategy. When further increasing the batch size from 500 to
1,000, the time overhead reduces not as significant as when
the batch size increases from 100 to 500 on both strategies
(i.e., from 0.22 to 0.18 and 0.41 to 0.29 seconds per case,
respectively), with a slightly decreased coverage (i.e., by
7.5% and 1.7%, respectively).

The Rebuild strategy has slightly higher coverage than
the Discard strategy, (96.0% compared with 90.4% when
batch size is 500). However, the Rebuild strategy dou-
bles the execution time (0.41 seconds compared with 0.22
seconds per case). This is mainly caused by the frequent
rebuilding of the test cases when crashes occur. These
results suggest that LAZYCOW can achieve high coverage
in various settings in a reasonable time. However, users
have to make a trade-off between getting a higher coverage
and reducing the time overhead. For example, the Discard
Strategy is significantly more efficient compared with the
Rebuild Strategy. A larger batch size is preferred if the device
has a longer idle window.

In addition, we further break down the experimental
results of executed test cases/execution time for each de-
vice under different batch size and allocation strategies
in Table 4, 5 and 6, where “D” represents the Discard
Strategy while “R” represents the Rebuild Strategy. For each
batch size, the overall results are consistent with what we
find in Table 3. More specifically, the number of executed
test cases under Rebuild Strategy is larger than that with
Discard Strategy for each device, while the time overhead
is the contrary (i.e., the Rebuild Strategy takes more time to
execute tests compared to the Discard Strategy). Moreover,
the increase of batch size helps reduce the number of the
executed test cases and the execution time enormously.

Fig. 5. The CPU usage of Device 2.

We further investigate the efficiency of LAZYCOW by
examining its CPU/memory/Energy usage when running
LAZYCOW on top of Android devices. Specifically, we
picked up a random device (i.e., Device 2 with Samsung,
API level 26) and presented the CPU/memory/Energy us-
age when running LAZYCOW on top of it. The following
three figures 5, 6, 7 summarise the CPU usage, memory
allocations, and energy consumption, indicating that LAZY-
COW is a resource-friendly app, which has a reasonable
amount of energy consumption. Specifically, the occupation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 9

Fig. 6. The memory usage of Device 2.

Fig. 7. The energy consumption of Device 2.

of CPU consumption is quite stable, around 13% when
running LAZYCOW as shown in Figure 5. In addition, the
memory usage is presented in figure 6, from which the
’code’ category shows the Memory that LAZYCOW uses
for code and resources, such as dex bytecode, optimised or
compiled dex code, .so libraries, and fonts. As we can see,
the memory usage of LAZYCOW is 34.9M, which is a low-
memory consumption. Moreover, as indicated in figure 7,
the default view for the energy profiler shows the energy
consumption of LAZYCOW, which is quite light and stable.

Answers to RQ1

LAZYCOW is efficient in supporting crowdsourced unit
tests. It achieves high coverage under various settings
(e.g., number of test cases dispatched every time and
whether to rebuild or discard the remaining test cases
when a crash happens). The users can further make a
trade-off between getting a higher coverage and reducing
the time overhead to suit their needs.

5.2 RQ2 – How effective is LAZYCOW in discovering
fragmentation-induced Compatibility Issues?

Our second research question concerns the effectiveness
of LAZYCOW in detecting compatibility issues in Android
devices. Based on the definition of incompatible issues
in work proposed by Cai et al. [4], We consider that an
Android API will introduce compatibility issues if its ex-
ecution results across different device configurations (e.g.,
model, OS version, etc.) are inconsistent. To be more specific,
an Android API is regarded as containing a compatibility
issue if any of the following happens: (1) One test case
fails on specific device configurations but runs successfully
on others; or (2) The test case throws different errors or
exceptions on different device configurations (e.g., throws
NoSuchMethodError on some configurations, while throws
SecurityException on others).

5.2.1 Experiment settings
Except for the 11 real-world devices in RQ1, we also include
Android emulators with API level 26/28/29/30 in this
research question. The reason why we select these specific
four API levels is because they should be consistent with the
versions appearing in the real-world devices. The test cases
involved are the same as RQ1.

5.2.2 Results
After analyzing and comparing the test case execution re-
sults based on the aforementioned three rules, LAZYCOW
detects 393 Android APIs that may have compatibility is-
sues. To confirm whether the APIs identified by LAZYCOW
indeed have compatibility issues, we manually examine the
APIs’ implementation in Android framework source code
on different Android SDK versions. In this step, we manu-
ally examined the 393 APIs, all of which are confirmed to be
true positives, suggesting a 100% true positive rate. It is also
worth mentioning that the high true positive rate benefits
from the dynamic testing technique, which provides actual
evidence to pinpoint compatibility issues. This result shows
that LAZYCOW is indeed capable of identifying compati-
bility issues on real-world Android devices. Unfortunately,
due to the lack of ground truth, we cannot evaluate if there
are false-negative results (i.e., compatibility issues that are
missed by LAZYCOW).

We summarize the compatibility issues into two major
types based on their specific errors/exceptions. We man-
ually investigate the exception type and its corresponding
API signature and implementation in AOSP to examine
whether it is caused by API signature change or API imple-
mentation change. The definitions of Signature-based com-
patibility issues and Semantics-based compatibility issues
are based on our observation and are detailed as follows.
• Type 1: Signature-based compatibility issues. This type

refers to the incompatibility caused by API deprecation
or the change of API signature, such as introducing new
APIs to the SDK, changing existing APIs’ parameters or
their return types, etc. For example, NoClassDefFoundEr-
ror, NoSuchMethodError and NoSuchFieldError are typical
signature-based exceptions.

• Type 2: Semantics-based compatibility issues. This type
implies that the API has consistent signatures over differ-
ent android SDK versions, but its implementation has been
changed. For example, RuntimeException,SecurityException
and NullPointerException are typical semantics-based ex-
ceptions.

Figure 8 summarizes all the possible errors/exceptions
caused by both types in the dataset. Among the 393
identified compatibility issues, 109 of them belong to
signature-based issues and 284 are semantic-based is-
sues. Among signature-based issues, NoClassDefFoundError,
NoSuchMethodError and NoSuchFieldError are the most fre-
quently occurred errors. UnsupportedOperationException and
SecurityException appear the most frequently in terms of
semantic-based issues. Table 7 further breaks down the
number of compatibility issues for each device. For exam-
ple, LAZYCOW identified 193 signature-based compatibility
issues and 150 semantic-based compatibility issues on the
Samsung device with Android API level 30 (i.e., Device 1).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 10

In addition, the number of detected compatibility issues
is quite stable on real-world devices (i.e., Device 1 to 11),
with 338 on average for each device. Despite this, we find
out that the number of compatibility issues on Android
emulators increases as the API level evolves consecutively.
For instance, the number of compatibility issues increases
from 192 to 308 on API level 26 to 28. As revealed by Li
et al. [11], the fast evolution of the Android framework has
indeed deprecated/removed/introduced a lot of APIs that
will likely induce compatibility issues.

TABLE 7
The number of compatibility issues identified on each device.

Device API # Signature-based # Semantics-based CountID Level incompatibility incompatibility
1 30 193 150 343
2 26 228 118 346
3 29 243 104 347
4 28 241 85 326
5 29 210 123 333
6 28 235 88 323
7 29 112 203 315
8 29 120 243 363
9 28 231 116 347
10 29 252 83 335
11 30 221 124 345

Emulator 26 124 68 192
Emulator 28 203 105 308
Emulator 29 214 117 331
Emulator 30 223 122 345

The following provides an illustrative case study for
each type of compatibility issue.

Compatibility Issue

Signature-based compatibility issues Semantics-based compatibility issues

NoClassDefFoundError

NoSuchM
ethodError

NoSuchFieldError

IllegalArgum
entException

IllegalAccessError

56 47 2 2 2

NullPointerException

UnsupportedO
perationException

NoSuchElem
entException

SecurityException

Runtim
eException

IllegalStateException

AssertionFailedError

ArrayIndexO
utO

fBoundsException

IO
Exception

AndroidRuntim
eException

Com
parisonFailure

161
28 26 20 18 9 7

5

4
3

2 1

AssertionError

Fig. 8. The category of error/exception types associated with compati-
bility issues

Case Study 1: Signature-based Compatibility Issue.
The API android.security.keystore.KeyGenParameterSpec.
Builder#setUnlockedDeviceRequired has been reported to con-
tain a signature compatibility issue. The corresponding test
case throws NoSuchMethodError on the device with API level
26 but can be successfully executed on other devices whose
API level is greater or equal to 28. This result indicates that
it would cause exceptions if an API is invoked on a certain
API level earlier than it has been introduced.

Case Study 2: Semantic-based Compatibility Issue. The
API android.util.LongSparseArray#valueAt has been reported
to contain a semantics-based compatibility issue. The cor-
responding test case throws ArrayIndexOutOfBoundsExcep-
tion on API level 29 and 30 while successfully executed
on the other devices. We manually looked into its source
code in the Android codebase and found that the actual
implementation of this API has been changed since API
level 29 but the signature of the API remains the same (i.e.,

the return type and the parameters). It is worth noting that
static methods such as CiD [11] cannot detect such a case.

Vendor/Model-specific Compatibility Issues. We find
that some compatibility issues are vendor/model-specific,
which are caused by unique AOSP customizations. We con-
sider that an Android API will introduce a vendor-specific
compatibility issue if its execution results are inconsistent
across different brands with the same API level, and a
model-specific compatibility issue if its execution results are
inconsistent across the devices from the same brand and
with the same API level. As a result, LAZYCOW is able to
detect 161 APIs with vendor-specific compatibility issues
and 47 model-specific compatibility issues, by comparing
the execution results on different brands/models of devices
with the same Android API level. Figure 9 and 10 further il-
lustrates the possible errors/exceptions that exist in vendor-
and model-specific compatibility issues, respectively. It is
observed that most vendor- and model-specific compat-
ibility issues are semantically based. For instance, most
incompatible APIs throw UnsupportedOperationException on
the specific device(s), which suggests that the requested
operation is not supported.

According to Wu et al. [24], such vendor- and model-
specific issues are significant and on the whole responsibil-
ity for the bulk of the security problems. For example, in
our experiments, LAZYCOW identified two severe crashes
that occur on Samsung and Huawei devices due to model-
specific compatibility issues. Specifically, we observe a tgkill
native crash when invoking the MediaPlayer on the Samsung
device with Android API level 26 (Android 8.0). This prob-
lem is caused by the bugs in the native library libhwui.so
in Samsung SM-A520F. This problem has attracted sev-
eral online discussions, such as on the StackOverflow [46].
LAZYCOW also reveals that hidden APIs are likely to crash
specifically on Huawei devices. Android Hidden APIs are
classes, methods, and resources that Google hides from app
developers to maintain stability. These APIs are located in
the android.jar file with the @hide Javadoc attribute. Google
hides them intentionally to avoid compatibility issues be-
cause the implementation of these APIs is prone to change
in future versions. However, it is easy to bypass Google’s
hidden API restrictions, as demonstrated on Github [47].
According to Li et al. [48], app developers are interested
in harnessing hidden APIs before Google releases them
as public APIs in the future. The prevalence of hidden
APIs may introduce crashes on Huawei devices, leading to
poor user experiences. The following demonstrates two case
studies for vendor-specific and model-specific compatibility
issues.

Case Study 3: Vendor-specific Compatibility Issue. The
API android.animation.ValueAnimator#setFrameDelay has been
reported to contain a vendor-specific compatibility issue.
The corresponding test case can be successfully executed on
all Huawei and Honor devices 4 but failed on the devices
from other vendors, including the ones with the same API
levels as the devices mentioned above. We manually looked
into the source code of the API in AOSP and found that
the implementation of this API has been changed since API
level 24, which suggests it should throw IllegalStateException

4. Honor is a sub-brand of Huawei.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 11

Vendor-specific Compatibility Issues

Signature-based compatibility issues Semantics-based compatibility issues

Runtim
eException

UnsupportedO
perationException

S
ecurityE

xception

N
oS
uchE

lem
entE

xception

N
ullP

ointerE
xception

IllegalStateException

IO
Exception

AssertionError

123

34
21

12

1

14

NoSuchM
ethodError

Com
parisonFailure

1

Fig. 9. The category of error/exception types associated with Vendor-
specific compatibility issues

Model-specific Compatibility Issues

 Semantics-based compatibility issues

UnsupportedO
perationException

IllegalStateException

IO
Exception

45

1 1

Fig. 10. The category of error/exception types associated with Model-
specific compatibility issues

on the Android API level equal to or greater than 24. How-
ever, it can be successfully executed on the aforementioned
Huawei and Honor devices, indicating that Huawei and
Honor customized the implementation on this API, which
may cause compatibility issues.

Case Study 4: Model-specific Compatibility Issue. The
API android.telephony.TelephonyManager#getImei has been re-
ported to contain a model-specific compatibility issue. The
corresponding test case can be successfully executed on
device ID 4 (Huawei P30 Pro with Android API level 28)
while throwing SecurityException on device ID 6 (Huawei
Enjoy 9 Plus with Android API level 28). By manually
checking the official Android API documentation, we found
that from API level 28, it is compulsory for apps to have the
READ PHONE STATE permission to access the IMEI of the
device, and will throw SecurityException if the permission
is not granted. However, on Huawei device ID 4 (Huawei
P30 Pro), it does not throw such an exception even when
the READ PHONE STATE permission is not granted. The
inconsistent results on two devices from the same vendor
and with the same Android API level suggest a model-
specific compatibility issue.

Answers to RQ2

Our approach is effective in automatically pinpoint-
ing and confirming API-induced compatibility issues. It
also goes beyond the state-of-the-art to detect not only
signature-based but also semantic-based compatibility
issues. Our results also demonstrate that LAZYCOW can
identify vendor- and model-specific compatibility issues,
which may bring severe security problems to the mobile
ecosystem.

5.3 RQ3 – How does LAZYCOW compare with existing
tools in detecting compatibility issues?
Given that the main purpose of our work is detecting
compatibility issues, both static/dynamic compatibility is-
sues detection tools, such as CiD [11], JUnitTestGen [15]
and a commercial-grade Compatibility Test Suite (Google
CTS [20]), are selected as the baselines to evaluate our
approach. We evaluate the performance of LAZYCOW, CiD,
JUnitTestGen and CTS in detecting compatibility issues.
Here we break down the comparative results as follows:

Comparison with CiD. To compare LAZYCOW with a
static compatibility issues detection tool, we selected the
state-of-the-art tool,CiD, which mines the historical versions
of Android framework source code to find incompatible API
usages, as our baseline. We ran CiD on the same dataset as
used in RQ1, i.e., 10,000 apps. To make the comparison fair,
we only include CiD results that have compatibility issues
on the API levels contained in our experiment devices, i.e.,
API levels 26, 28, 29, and 30. Compared with 393 com-
patibility issues detected by LAZYCOW, CiD has identified
215 compatibility issues. Specifically, CiD failed to detect
336 issues identified by LAZYCOW, with 100 of which are
signature-based issues, and 236 are semantic-based issues.
We further analyze the results and find that the missed
signature-based issues are caused by system customization
that CiD cannot spot. Missing semantic-based issues is also
in line with the intuition that because of lacking semantic
analysis, CiD is not capable of pinpointing the compatibility
issues caused by the semantic change of an API. On the
other hand, LAZYCOW missed 158 compatibility issues de-
tected by CiD. Of these 134 are caused by failed generated
test cases for the APIs (e.g., UI-related APIs). It is non-trivial
to automatically generate unit tests in general as it requires
sophisticated semantic analysis to model the sequences of
statement invocations. For example, UI-related APIs may
involve the initialization of UI resources that cannot be
done programmatically. We, therefore, argue that such false-
negative results can be eliminated if valid test cases for
these APIs are provided. In summary, our experimental
results indicate that dynamic techniques (e.g., crowdsourced
testing) can indeed be helpful to supplement the capabilities
of static analysis.

Comparison with JUnitTestGen. Apart from static
analysis-based techniques, a few dynamic approaches have
been proposed to detect compatibility issues. To the best of
our knowledge, JUnitTestGen is the one and only dynamic
compatibility issues detecting tool [15]. It mines Android
API usages to generate unit test cases for pinpointing com-
patibility issues caused by the fast evolution of the Android

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 12

TABLE 8
The comparison results between LAZYCOW and CTS on device 2 (i.e.,

Samsung with API level 26).

Tool LAZYCOW CTS
Test Cases 5,401 3,602

Compatibility Issues 393 6

framework. To this end, we evaluate the performance of
LAZYCOW and JUnitTestGen on the same dataset in RQ1,
which in total contains 10,000 Android apps. Here, to clarify,
the key difference of LAZYCOW and JUnitTestGen is that
LAZYCOW provide a crowdsourced testing platform while
JUnitTestGen can only execute tests on Android emulators.
To make the comparison fair, we present the experimental
results on the API levels contained in our experiment de-
vices, i.e., API levels 26, 28, 29, and 30.

As highlighted in table 7, LAZYCOW outperforms JU-
nitTestGen by detecting more compatibility issues on API
level 26, 28, 29, and 30. Take API level 26 as an ex-
ample, LAZYCOW successfully detects 228 signature-based
compatibility issues and 118 semantics-based compatibil-
ity issues on device 2 while JUnitTestGen only pinpoints
124 signature-based compatibility issues and 68 semantics-
based compatibility issues on emulator 26. The reason be-
hind this is quite straightforward as JUnitTestGen only runs
tests on emulators that deploy the original Android OS,
overlooking many compatibility issues caused by vendor/-
model customization. Overall, the comparison results reveal
the necessity of executing test cases on real-world devices
for systematically finding Android fragmentation issues.
Without the mechanism of executing tests on real-world
devices, it is very hard to detect compatibility issues caused
by vendor/model customization. It also demonstrates that
our LAZYCOW approach can indeed find more diverse
compatibility issues and hence is promising to complement
existing the dynamic approach.

Comparison with Google CTS. Google provides a
commercial-grade test suite, CTS, which is designed for con-
tinuous compatibility issues in Android OS customization.
The purpose of CTS is to ensure that the software remains
compatible throughout the development process. We thus
select CTS for effectiveness comparison as well. Given that
CTS can only be tested in a lab environment and it is time-
consuming to execute the full package of the test suite
across all participants’ devices, we thus evaluate LAZYCOW
and CTS on a randomly selected device and compare their
performance in compatibility issues detection.

In total, LAZYCOW successfully executed 5,401 tests on
the device under the discard strategy with batch size 100,
while CTS only executed 3,602 tests on the actual device.
We then compare the results of these executed tests to de-
termine compatibility issues. As shown in Table 8, CTS only
detects 6 compatibility issues, while LAZYCOW is capable
of detecting 393 compatibility issues (covers the 6 compati-
bility issues discovered by CTS). We further manually check
the test cases specified in CTS and observe that the false
negatives (compared with LAZYCOW) are mainly caused by
the low coverage of Android system APIs. The test cases
of CTS only cover a small amount of frequently used APIs,

overlooking a bunch of uncommon APIs. On the other hand,
occasionally while running the tests, a system dialogue
may pop up informing the user that the device is not
responding. This alert dialogue obstructs the execution of
tests, which causes them to fail. Besides, the lack of sufficient
testing context (e.g., various parameter values) is another
reason why CTS fails in detecting compatibility issues,
especially those caused by vendor/model customization.
Specifically, vendor/model customization may be triggered
under narrow circumstances with specific inputs, which
makes CTS insufficient by overlooking the variety of API
parameter values. In contrast, LAZYCOW is able to detect
such compatibility issues because we rely on JUnitTestGen
in mining existing Android API usages to generate API-
focused test cases, which retain the execution context in real-
world applications.

5.4 RQ4 – Is LAZYCOW useful in practice from users’
perspective?

Apart from the efficiency and effectiveness analysis of our
approach, it is also essential to investigate the users’ satis-
faction with LazyCow in practice. Considering LAZYCOW
is designed to run tests on users’ devices, it is necessary
to evaluate the human-perceived quality and usefulness
of LAZYCOW. To this end, in this research question, we
focus on investigating the usefulness of LAZYCOW from
users’ perspective, which is also part of our initial at-
tempts towards demonstrating the benefits of LAZYCOW
based on what meets customers’ fulfilment. Here, we use
a novel commercial model, which uses people’s Android
smartphone to run LAZYCOW, and provides an incentive as
payback (such as replacing the advertisements in the free
apps). Specifically, we would collaborate with commercial
app development companies on offering premium accounts
(i.e., with no advertisements or exclusive content benefits)
to customers if they choose to download LazyCow on their
phone. In this way, from app development companies’ per-
spective, they can get valuable compatibility issues reports
and from customers’ perspective, they have an incentive to
download and install LazyCow.

In this work, we publicize our tool and randomly recruit
real Android users to download and install LazyCow on
their devices. Then, users are requested to use their mobile
phone the same as their daily habit for a day. During this
time, LazyCow works as a background service, requesting
tests and then executing them when the device is in an idle
state.

5.4.1 Experiment settings.
To answer this RQ, we perform a customer satisfaction eval-
uation by leveraging Likert scale [49] metrics. It is a 5-point
scale that ranges from a weaker endorsement (meaningless
agreement with or approval) of the item (i.e., strongly dis-
agree) to a stronger endorsement of the item (i.e., strongly
agree). We used a Likert-scale closed question survey to ask
users questions that gauge their satisfaction levels about
LAZYCOW. Table 9 summarizes the questions we request
the respondents to answer after using LAZYCOW, on a scale
from 1-5, where 1 = strongly disagree, 2 = disagree, 3 =
neutral, 4 = agree, 5 = strongly agree.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 13

TABLE 9
The survey.

Score Questions Scale

CES 1.It is easy to use LazyCow. 1-5
2.LazyCow won’t affect my interaction with mobile phone. 1-5

CSS
3.I am willing to download and install LazyCow to replace advertisements. 1-5
4.I feel happy with my experience with the LazyCow App. 1-5
5.I did not encounter compatibility problems after using LazyCow. 1-5

NPS 6.I will recommend LazyCow to family, friends, or colleagues. 1-5

The design of the survey is organized based on the
following principles:
• CES (Customer Effort Score): CES is found by asking users

to rate their effort levels. We obtain this score by asking
users to rate the simplicity of using LAZYCOW on a scale
from 1-5 (i.e., question 1 and 2). CES is calculated as:

CES = %Easy − %Difficult (1)

• CSS (Customer Satisfaction Score): We obtain this score
by asking users’ satisfaction when using LAZYCOW (i.e.,
question 3, 4 and 5). CSS is calculated as:

CSS =
Number of satisfied customers

Number of satisfaction survey responses
× 100 (2)

• NPS (Net Promoter Score): NPS is calculated by asking
users how likely they are to recommend LAZYCOW (i.e.,
question 6). NPS is calculated as:

NPS = %Promoters − %Detractors (3)

Before we conducted this experiment, we obtained ethics
approval from the Research Ethics Committee of Monash
University5. We invited 11 Android users (i.e., randomly
invited Android users who are interested in using LAZY-
COW as a replacement for seeing advertisements) to install
LAZYCOW and obtain feedback by answering the survey
questions. The participants are recruited via online ad-
vertising. Each of them is asked to download and install
LAZYCOW on their Android device and then use the phone
as they usually do for a day before filling out the survey.
LAZYCOW runs in the rebuild strategy with a batch size of
100.

5.4.2 Results

We calculate the aforementioned three scores to evaluate
LAZYCOW from users’ perspective, which are elaborated as
follows:

1. The CES is calculated based on question 1 and 2.

CESquestion1 = 92% − 0% = 92% (4)

CESquestion2 = 92% − 0% = 92% (5)

It is observed that 92% of responses think it is easy to use
LAZYCOW while no candidate feels it is difficult to use.

5. The project ID is 30641.

2. We measure the customer satisfaction score(CSS)
based on questions 3, 4 and 5. The CSS is calculated on a
scale of 0-100% (i.e., equation 2), where 100 represents the
total customer satisfaction. Only the number of respondents
who rated their satisfaction with scores 4 and 5 are included.

CSSquestion3 =
11

12
× 100 = 92% (6)

CSSquestion4 =
11

12
× 100 = 92% (7)

CSSquestion5 =
12

12
× 100 = 100% (8)

The results show that LAZYCOW obtains a high user satis-
faction score and none of the participants encountered any
compatibility problems when using LAZYCOW.

3. The promoters have a scale from 4 to 5, indicating
they are highly likely to recommend LAZYCOW to others.
While the detractors have scaled from 1 to 3, indicating
they are unsatisfied with the recommendation. The score
is calculated based on equation 3:

NPSquestion6 = 92% − 8% = 84% (9)

The results illustrate that most users are positive about
LAZYCOW.

In addition, we observe the emphasis on reasons
why/why not users have the desire to install LAZYCOW
with incentives (i.e., they will not see advertisements any-
more). For instance, one participant said that they are ea-
ger to install LAZYCOW because they are “able to get rid
of annoying commercial advertisements, which would be
placed in a location that covers up or hides any area that
I have interest in viewing during interactions.”. Similarly,
another participant stated, “It is a fair deal to stop pop-
up Ads with the cost of having a task running at idle
time, which won’t affect daily usage.”. Beyond LAZYCOW’s
usefulness, participants also cite its satisfaction after they
used LAZYCOW. For example, one participant said that
they are “satisfied with the experience of using LAZYCOW
because I didn’t even feel it running and it won’t disturb
my other interactions.” Finally, while we observed little
quantitative evidence of negative experiences of LAZYCOW,
we did observe one participant stating that “I generally
don’t want to install such apps because I have no idea
whether it will steal my personal information without my
consent.” We believe such concerns would be well mitigated
if the lightweight crowdsourced testing approach is directly
embedded and released by phone manufacturers. Overall,
the aforementioned answers about customer experiences for
using LAZYCOW provide strong evidence that LAZYCOW is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 14

useful and welcome in practice.

Answers to RQ3

By investigating the customer experiences through qual-
itative metrics, users’ satisfaction provides strong evi-
dence that LAZYCOW is useful and welcome in practice.

6 DISCUSSION

We now discuss the implications of our crowdsourced
framework, potential directions for future works and the
comparison with CTS.

Practical Crowdsourced Testing Framework. We have
presented a lightweight crowdsourced testing framework
for automatically dispatching and executing test cases with-
out disturbing users, which is able to detect compatibility
issues lies on specific devices. Previous works [11] resort
to static analysis techniques to detect compatibility issues.
However, static analysis tools are known to be imprecise
because they lack the actual evidence for pinpointing com-
patibility issues. For example, static tools tend to over-
look the semantics-based compatibility issues (i.e., APIs
have the same signature but the actual implementations
have been customized). Thus, in this work, we leverage
dynamic crowdsourced techniques to detect broader cat-
egories of compatibility issues in real-world apps rather
than signature-based ones. Although LAZYCOW has been
proven to be effective in detecting compatibility issues in
real-world devices. LAZYCOW could also be easily adapted
to automatically diagnose issues that exist on Android de-
vices for other purposes. LAZYCOW allows users to provide
customized test cases corresponding to certain issues and to
dynamically execute them across Android devices around
the world.

Lightweight Crowdsourced Testing Go Beyond An-
droid Fragmentation Taming. Our approach performs
crowdsourced testing for Android devices, which are not
strongly attached to fragmentation issues. We believe it
could be easily adapted to analyze other security issues,
e.g., to automatically detect hackable vulnerabilities by ap-
plying customized test cases. Our platform can be directly
combined with fuzzing tools for discovering more vulnera-
bilities or defects in Android. It hence goes beyond compat-
ibility testing and provides a more general-purpose form of
Android testing, especially for security issues detection. We
plan to explore these research directions in our future work.

Comparison with CTS. Google CTS is expected to be
used by manufacturers to test their new devices before
releasing them to the public. The manufacturers need to
download and install the CTS module on a computer to
which the new device under testing is physically attached
and launch the CTS. The CTS itself will then be responsible
for running all its included test cases on the attached devices
and subsequently storing the execution results. As long as
the new device successfully passes the CTS scanning (i.e.,
no test cases fail), the manufacturer could consider that
the device does not contain compatibility issues and hence
can be released to the public. However, CTS is known as
low efficient [21] and heavyweight in terms of detecting

compatibility issues. Here, we elaborate on the details as
follows:
• Low-Efficiency : CTS is a commercial-grade test suite, and

it usually takes at least several hours to execute all the
tests of CTS. Consequently, the development schedule of
Android device manufacturers could be seriously affected
if the CTS test is involved in the daily system integration
or continuous regression testing [21]. Indeed, the setup
steps [50] are pretty sophisticated because it required to
run on a desktop machine and execute test cases on phys-
ically connected devices. This motivates us to provide an
automated tool to parallelize the test suite across many
devices (and not limited to a lab environment) so that
device manufacturers can benefit from a such distributed
testing strategy to resolve compatibility issues to adapt to
an ever-quicker iteration process.

• Heavyweight: As argued by Liu et al. [22], the CTS mech-
anism has been long blamed for being heavily weighted
for daily testing. Consider the evolution of the CTS test
case database as an example. During its evolution, some
new test cases might be added, or existing test cases
could be updated. These changes cannot be easily included
for already released devices that have previously passed
CTS scans. In other words, there is no guarantee that
the changed test cases will not lead to compatibility is-
sues in publicly available devices. Similarly, the current
CTS module cannot easily support the requirements of
developers in evaluating their compatibility-related test
cases. Such requirements have even gone beyond the scope
of CTS as it requires the test cases to not only pass a
single device but also all the publicly available devices,
including the ones released by different manufacturers and
the different versions of the same manufacturer. Indeed,
the setup steps [50] are quite sophisticated because it needs
to run on a desktop machine and execute test cases directly
on connected devices. It is also time-consuming to finish
one run of the test because the CTS database already
contains many test cases. Yet, it also requires dedicated
efforts for developers to include new test cases into the
CTS’s workflow.

6.1 Threats to validity

The main limitation of our work lies in the limited scale of
evaluation. Due to both the limited number of devices avail-
able (for RQ1 and RQ2) and the Android users to participate
(for RQ3), our evaluation results may not represent Android
smartphone vendors and users worldwide. Nevertheless,
we have included top Android smartphone vendors (e.g.,
Samsung, Xiaomi, and Huawei) [51] with various Android
versions (API levels 26-30) in our evaluation, and identi-
fied real-world compatibility issues in these devices. It can
be foreseen that LAZYCOW will reveal more compatibility
issues by including a wider range of vendors and devices
(e.g., in a real-world crowdsourced testing scenario).

Second, the test cases currently involved in our experi-
ments may not cover all Android framework APIs. For ex-
ample, some UI-related APIs may involve the initialization
of UI resources, which makes it very challenging to pro-
grammatically generate tests for them. The limitation from
unit test generation may further impact the completeness

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 15

in detecting API-introduced compatibility issues. However,
we argue that this limitation can be alleviated by integrating
other approaches for a wider range of API coverage. Also,
we remind the readers that this is not the main objective of
this work, while our work is mainly focused on providing
a workflow of the crowdsourced testing platform to enable
users to execute customized tests on real-world devices.

Third, another challenge of our work was the scarcity
of literature providing standard metrics to evaluate how
effective crowdsourced testing approaches are in practice.
According to [52], most current crowdsourced testing ap-
proaches are owned by and operated in the industry, of
which the overall workflows and detailed processes have
not been published in the literature. This limitation hinders
more in-depth comparisons between our work and other
related works. Furthermore, the community lacks standard
metrics for evaluating the effectiveness of crowdsourced
testing approaches, which needs further research.

Last but not least, the capability of our approach is
limited by specific types of compatibility issues, leading to
false negatives. According to Mahmud [53], apart from com-
patibility issues raised by API signature/semantic changes,
there exist other types of compatibility issues, such as those
introduced by field evolution, callback method changes [54],
etc. Nevertheless, as summarised by Liu et al. [55], the num-
ber of such compatibility issues is quite limited, suggesting
that the impact of such cases on our approach may not be
significant.

7 RELATED WORK
Android fragmentation and compatibility issues. Numer-
ous works [1], [17]–[19], [56]–[58] have revealed that An-
droid fragmentation is an essential challenge in the An-
droid ecosystem. Han et al. [18] systematically examined the
bug reports with smartphone vendors HTC and Motorola,
providing evidence to point out the fragmentation issues
in the Android ecosystem. Other related works [23], [24],
[59], [60] also revealed how severe the Android ecosystem
has been suffering from fragmentation problems. Kamran
et al. [59] systematically classify Android fragmentation
problems and discuss the solutions for developers to handle
them. Mutchler et al. [60] show that apps targeting out-
dated Android versions would cause serious security conse-
quences, such as incompatibility. Wu et al. [24] investigated
how vendor customizations impact overall Android security
by analyzing representative stock Android images. Zhang
et al. [61] studied the compatibility intentions of Android
apps from developers’ perspective, revealing that malware
developers’ compatibility intentions were significantly dif-
ferent from those of benign apps. Zhou et al. [23] developed
a tool for automatically detecting the security risks that lie
in customized Android devices.

Also, fragmentation can cause severe compatibility is-
sues due to the API’s fast-evolving [7], [11], [62], [63]. Liu
et al. [63] conducted an empirical study on performance
bugs and summarize their common patterns, which reveals
that performance bugs could be found on certain Android
devices. In addition, Nayebi et al. [64] found that varying
display resolutions of mobile devices are a serious challenge
in Android development, leading to compatibility issues.

These works demonstrate Android fragmentation is a major
cause of Android security issues. The prevalence of such
fragmentation issues motivated us to automatically detect
them through crowdsourced testing.

Detecting Android compatibility issues. To resolve the
Android fragmentation issues, researchers leverage several
testing tools [12], [22], [65]–[71] for mobile application sys-
tems. For example, Ham et al. [65] designed and imple-
mented a compatibility testing system on top of the code
level and the API level to handle fragmentation. Kaasila et
al. [66] presented Testdroid for conducting user interface
tests on a variety of Android devices to identify crashes
caused by fragmentation. Halpern et al. [72] proposed Mo-
saic, a record and replay tool to tame fragmentation through
testing Android devices with different models. Huang et
al. [73] presented a Mobile App Automated Compatibility
Testing Service (AppACTS), aiming at helping developers
to conduct tests on devices more effectively. Ki et al. [74]
further proposed a UI compatibility testing system, Mimic,
that supports parallel testing across different Android or
app versions. Also, Google provides the Compatibility Test
Suite (CTS) [20] to tame fragmentation on Android devices.
Also, Kong et al. [75] conducted a systematic literature
review on the state-of-the-art works of Android testing and
concluded that taming Android ecosystem fragmentation is
one of the most concrete research directions. However, none
of these works can be used in practical terms to execute
test cases across all real-world Android devices. Apart from
that, the state-of-the-art tool, CTS, is annoying users when
running tests, and given there are 24,093 [76] distinct devices
out there, it is nearly impossible for developers to collect
all sorts of Android devices to identify compatibility issues.
Apart from that, Li et al. [11] systematically modelled the
life-cycle of the Android APIs to detect compatibility issues.
In addition, Mahmud et al. [54] further proposed ACID that
statically detected both API invocation compatibility issues
and API callback compatibility issues. Moreover, Silva et
al. [77] introduced novel algorithms that automatically de-
tect API and permission-induced incompatibilities. How-
ever, these static analysis approaches are known to suffer
from imprecision when extracting the usage of the APIs,
leading to lots of false-positive and false-negative results.
To that end, LAZYCOW applies the dynamical technique
to execute test cases on real-world devices to provide ad-
ditional evidence in detecting compatibility issues that are
overlooked by the state-of-the-art.

Crowdsourced testing in Android. Several tech-
niques [32]–[37] were proposed to do crowdsourced test-
ing for android applications. Wu et al. [32] proposed Ap-
pCheck, a crowdsourced testing service to automatically
record the user interactions over the internet and then
replayed them on real-world devices in order to identify
compatibility issues. Li et al. [34] developed a platform,
CoCoTest, generating bug reports and recommending them
to the other workers in real-time. Further, Zhang et al. [37]
summarize informative concepts, insights, and challenges
about common questions on crowdsourced test services.
It indicates the challenges in performing large-scale user-
oriented testing across Android devices, which this paper
mainly focused on.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 16

8 CONCLUSIONS AND FUTURE WORK
In this work, we presented a novel and lightweight proto-
type platform, LAZYCOW, that leverages crowdsourced test-
ing techniques for pinpointing compatibility issues caused
by Android fragmentation. Experimental results of thou-
sands of test cases on a wide range of real-world Android
devices show that (1) LAZYCOW is capable of automati-
cally executing test cases on real-world Android devices
in crowdsourced dispatching strategies;(2) Our approach is
practical in automatically pinpointing and confirming API-
induced compatibility issues. It also goes beyond the state-
of-the-art to pinpoint not only signature-based compatibility
issues but also semantics-based and vendor/model-based
compatibility issues; (3) By investigating the customer expe-
riences through qualitative metrics, users’ satisfaction pro-
vides strong evidence that LAZYCOW is useful and welcome
in practice.

In future work, we plan to explore the possibility of
applying lightweight crowdsourced testing for more generic
purposes going beyond taming Android fragmentation. In-
deed, our approach, although proposed for crowdsourced
testing for compatibility issues detection, is not strongly
attached to identifying fragmentation issues. We believe it
could be easily adapted to analyze other problems, such as
security-related issues (e.g., to automatically detect hackable
vulnerabilities by applying customized test cases).

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous review-
ers who have provided insightful and constructive com-
ments on this paper. This work was supported by the
Australian Research Council (ARC) under a Laureate Fel-
lowship project FL190100035.

REFERENCES

[1] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in
mobile app development,” in 2013 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement. IEEE,
2013, pp. 15–24.

[2] Russell Brandom, “There are now 2.5 billion active Android
devices,” https://www.theverge.com/2019/5/7/18528297/
google-io-2019-android-devices-play-store-total-number-
statistic-keynote, online; accessed 15 Aug 2022.

[3] P. Liu, M. Fazzini, J. Grundy, and L. Li, “Do customized
android frameworks keep pace with android?” arXiv preprint
arXiv:2205.15535, 2022.

[4] H. Cai, Z. Zhang, L. Li, and X. Fu, “A large-scale study of applica-
tion incompatibilities in android,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 216–227.

[5] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding
and detecting evolution-induced compatibility issues in android
apps,” in 2018 33rd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2018, pp. 167–177.

[6] S. Scalabrino, G. Bavota, M. Linares-Vásquez, M. Lanza, and
R. Oliveto, “Data-driven solutions to detect api compatibility
issues in android: an empirical study,” in 2019 IEEE/ACM 16th In-
ternational Conference on Mining Software Repositories (MSR). IEEE,
2019, pp. 288–298.

[7] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android
apps,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, 2016, pp. 226–237.

[8] H. Xia, Y. Zhang, Y. Zhou, X. Chen, Y. Wang, X. Zhang, S. Cui,
G. Hong, X. Zhang, M. Yang et al., “How android developers
handle evolution-induced api compatibility issues: a large-scale
study,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 2020, pp. 886–898.

[9] H. K. Ham and Y. B. Park, “Mobile application compatibility
test system design for android fragmentation,” in International
Conference on Advanced Software Engineering and Its Applications.
Springer, 2011, pp. 314–320.

[10] H. Huang, L. Wei, Y. Liu, and S.-C. Cheung, “Understanding and
detecting callback compatibility issues for android applications,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 532–542.

[11] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating the
detection of api-related compatibility issues in android apps,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2018, pp. 153–163.

[12] T. Zhang, J. Gao, J. Cheng, and T. Uehara, “Compatibility test-
ing service for mobile applications,” in 2015 IEEE Symposium on
Service-Oriented System Engineering. IEEE, 2015, pp. 179–186.

[13] X. Sun, L. Li, T. F. Bissyandé, J. Klein, D. Octeau, and J. Grundy,
“Taming reflection: An essential step toward whole-program anal-
ysis of android apps,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 30, no. 3, pp. 1–36, 2021.

[14] P. Liu, L. Li, Y. Yan, M. Fazzini, and J. Grundy, “Identifying and
characterizing silently-evolved methods in the android api,” in
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP). IEEE, 2021, pp.
308–317.

[15] X. Sun, X. Chen, Y. Zhao, P. Liu, J. Grundy, and L. Li, “Mining
android api usage to generate unit test cases for pinpointing
compatibility issues,” in 37th IEEE/ACM International Conference
on Automated Software Engineering, 2022, pp. 1–13.

[16] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, D. Hao, G. Huang, and F. Feng,
“Prada: Prioritizing android devices for apps by mining large-
scale usage data,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 2016, pp. 3–13.

[17] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test in-
put generation for android: Are we there yet?(e),” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2015, pp. 429–440.

[18] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding android fragmentation with topic analysis of
vendor-specific bugs,” in 2012 19th Working Conference on Reverse
Engineering. IEEE, 2012, pp. 83–92.

[19] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and X. Liu, “Un-
derstanding and detecting fragmentation-induced compatibility
issues for android apps,” IEEE Transactions on Software Engineering,
vol. 46, no. 11, pp. 1176–1199, 2018.

[20] Compatibility Test Suite, 2021. [Online]. Available: https://
source.android.com/compatibility/cts

[21] J.-H. Park, Y. B. Park, and H. K. Ham, “Fragmentation problem in
android,” in 2013 International Conference on Information Science and
Applications (ICISA). IEEE, 2013, pp. 1–2.

[22] C.-H. Liu, W.-K. Chen, and S.-L. Chen, “A concurrent approach
for improving the efficiency of android cts testing,” in 2016 Inter-
national Computer Symposium (ICS). IEEE, 2016, pp. 611–615.

[23] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The
peril of fragmentation: Security hazards in android device driver
customizations,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 409–423.

[24] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact
of vendor customizations on android security,” in Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 623–634.

[25] A. Orso, D. Liang, M. J. Harrold, and R. Lipton, “Gamma system:
Continuous evolution of software after deployment,” in Proceed-
ings of the 2002 ACM SIGSOFT international symposium on Software
testing and analysis, 2002, pp. 65–69.

[26] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, and
B. Natarajan, “Skoll: Distributed continuous quality assurance,”
in Proceedings. 26th International Conference on Software Engineering.
IEEE, 2004, pp. 459–468.

[27] S. Elbaum and M. Hardojo, “An empirical study of profiling strate-
gies for released software and their impact on testing activities,”
in Proceedings of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis, 2004, pp. 65–75.

[28] Global App Testing, 2022. [Online]. Available: https:
//go.globalapptesting.com/app-testing-for-engineering-qa

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 17

[29] Digivante, 2022. [Online]. Available: https://www.digivante.com/
crowdsourced-testing-referral/?utm campaign=
SoftwareTestingHelp\%20Referral\%20Campaigns&utm source=
software-testing-help&utm content=crowdtesting

[30] test IO, 2022. [Online]. Available: https://goo.gl/rGQPWF
[31] QA Mentor, 2022. [Online]. Available: https:

//www.qamentor.com/qa-services/crowdsourced-testing-
services/

[32] G. Wu, Y. Cao, W. Chen, J. Wei, H. Zhong, and T. Huang, “Ap-
pcheck: a crowdsourced testing service for android applications,”
in 2017 IEEE International Conference on Web Services (ICWS). IEEE,
2017, pp. 253–260.

[33] C. Guo, T. He, W. Yuan, Y. Guo, and R. Hao, “Crowdsourced
requirements generation for automatic testing via knowledge
graph,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 545–548.

[34] H. Li, C. Fang, Z. Wei, and Z. Chen, “Cocotest: collaborative
crowdsourced testing for android applications,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2019, pp. 390–393.

[35] H. Liang and T. He, “Summarizing the crowdsourced testing,” in
2019 IEEE 5th International Conference on Computer and Communica-
tions (ICCC). IEEE, 2019, pp. 526–530.

[36] X. Chen, H. Jiang, Z. Chen, T. He, and L. Nie, “Automatic test
report augmentation to assist crowdsourced testing,” Frontiers of
Computer Science, vol. 13, no. 5, pp. 943–959, 2019.

[37] T. Zhang, J. Gao, and J. Cheng, “Crowdsourced testing services for
mobile apps,” in 2017 IEEE Symposium on Service-Oriented System
Engineering (SOSE). IEEE, 2017, pp. 75–80.

[38] L. Wei, Y. Liu, and S.-C. Cheung, “Pivot: learning api-device
correlations to facilitate android compatibility issue detection,” in
2019 IEEE/ACM 41st International Conference on Software Engineer-
ing (ICSE). IEEE, 2019, pp. 878–888.

[39] J. Bao, Android App-Hook and Plug-In Technology. CRC Press, 2019.
[40] Tinker, 2021. [Online]. Available: https://github.com/Tencent/

tinker
[41] JUnit, 2021. [Online]. Available: https://en.wikipedia.org/wiki/

JUnit#:∼:text=JUnit%20is%20a%20unit%20testing,xUnit%20that%
20originated%20with%20SUnit.&text=junit%20and%20junit.

[42] Source Code of the Android Open Source Project, 2021. [Online].
Available: https://cs.android.com/android

[43] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation
for object-oriented software,” in Proceedings of the 19th ACM SIG-
SOFT symposium and the 13th European conference on Foundations of
software engineering, 2011, pp. 416–419.

[44] wikipedia, “Hot swapping,” https://en.wikipedia.org/wiki/
Hot swapping, online; accessed 28 January 2022.

[45] P. Liu, L. Li, Y. Zhao, X. Sun, and J. Grundy, “Androzooopen:
Collecting large-scale open source android apps for the research
community,” in Proceedings of the 17th International Conference on
Mining Software Repositories, 2020, pp. 548–552.

[46] Stack OverFlow, “Native error on Android 8.0 Samsung S8,”
https://stackoverflow.com/questions/50360227/tgkill-native-
error-on-android-8-0-samsung-s8, online; accessed 02 December
2021.

[47] Github, “android-hidden-api,” https://github.com/anggrayudi/
android-hidden-api, online; accessed 02 December 2021.

[48] L. Li, T. F. Bissyandé, Y. Le Traon, and J. Klein, “Accessing inacces-
sible android apis: An empirical study,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2016, pp. 411–422.

[49] wikipedia, “Likert scale,” https://en.wikipedia.org/wiki/Likert
scale, online; accessed 13 January 2022.

[50] CTS setup steps, 2021. [Online]. Available: https:
//source.android.com/compatibility/cts/setup

[51] Statcounter, “Mobile Vendor Market Share Worldwide,” https:
//gs.statcounter.com/vendor-market-share/mobile, online; ac-
cessed 02 December 2021.

[52] R. Gao, Y. Wang, Y. Feng, Z. Chen, and W. E. Wong, “Successes,
challenges, and rethinking–an industrial investigation on crowd-
sourced mobile application testing,” Empirical Software Engineer-
ing, vol. 24, no. 2, pp. 537–561, 2019.

[53] T. Mahmud, M. Che, and G. Yang, “Android api field evolution
and its induced compatibility issues,” in Proceedings of the 16th
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, 2022, pp. 34–44.

[54] Mahmud, Tarek and Che, Meiru and Yang, Guowei, “Android
compatibility issue detection using api differences,” in 2021 IEEE

International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 2021, pp. 480–490.

[55] P. Liu, Y. Zhao, H. Cai, M. Fazzini, J. Grundy, and L. Li, “Au-
tomatically detecting api-induced compatibility issues in android
apps: A comparative analysis (replicability study),” arXiv preprint
arXiv:2205.15561, 2022.

[56] D. Cotroneo, A. K. Iannillo, R. Natella, and R. Pietrantuono, “A
comprehensive study on software aging across android versions
and vendors,” Empirical Software Engineering, vol. 25, no. 5, pp.
3357–3395, 2020.

[57] C. Li, C. Xu, L. Wei, J. Wang, J. Ma, and J. Lu, “Elegant: Towards
effective location of fragmentation-induced compatibility issues
for android apps,” in 2018 25th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2018, pp. 278–287.

[58] H. Huang, M. Wen, L. Wei, Y. Liu, and S.-C. Cheung, “Character-
izing and detecting configuration compatibility issues in android
apps,” arXiv preprint arXiv:2109.00300, 2021.

[59] M. Kamran, J. Rashid, and M. W. Nisar, “Android fragmentation
classification, causes, problems and solutions,” International Jour-
nal of Computer Science and Information Security, vol. 14, no. 9, p.
992, 2016.

[60] P. Mutchler, Y. Safaei, A. Doupé, and J. Mitchell, “Target frag-
mentation in android apps,” in 2016 IEEE Security and Privacy
Workshops (SPW). IEEE, 2016, pp. 204–213.

[61] Z. Zhang and H. Cai, “A look into developer intentions for app
compatibility in android,” in 2019 IEEE/ACM 6th International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE, 2019, pp. 40–44.

[62] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android
apps: A systematic literature review,” Information and Software
Technology, vol. 88, pp. 67–95, 2017.

[63] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in Proceedings of
the 36th international conference on software engineering, 2014, pp.
1013–1024.

[64] F. Nayebi, J.-M. Desharnais, and A. Abran, “The state of the art of
mobile application usability evaluation,” in 2012 25th IEEE Cana-
dian Conference on Electrical and Computer Engineering (CCECE).
IEEE, 2012, pp. 1–4.

[65] H. K. Ham and Y. B. Park, “Designing knowledge base mobile
application compatibility test system for android fragmentation,”
International Journal of Software Engineering and Its Applications,
vol. 8, no. 1, pp. 303–314, 2014.

[66] J. Kaasila, D. Ferreira, V. Kostakos, and T. Ojala, “Testdroid:
automated remote ui testing on android,” in Proceedings of the 11th
International Conference on Mobile and Ubiquitous Multimedia, 2012,
pp. 1–4.

[67] S. Vilkomir, “Multi-device coverage testing of mobile applica-
tions,” Software quality journal, vol. 26, no. 2, pp. 197–215, 2018.

[68] J. Cheng, Y. Zhu, T. Zhang, C. Zhu, and W. Zhou, “Mobile com-
patibility testing using multi-objective genetic algorithm,” in 2015
IEEE Symposium on Service-Oriented System Engineering. IEEE,
2015, pp. 302–307.

[69] Q. Naith and F. Ciravegna, “Hybrid crowd-powered approach
for compatibility testing of mobile devices and applications,” in
Proceedings of the 3rd International Conference on Crowd Science and
Engineering, 2018, pp. 1–8.

[70] A. Lanui and T. K. Chiew, “A cloud-based solution for testing
applications’ compatibility and portability on fragmented android
platform,” in 2019 26th Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2019, pp. 158–164.

[71] C.-H. Liu, “A compatibility testing platform for android multime-
dia applications,” Multimedia Tools and Applications, vol. 78, no. 4,
pp. 4885–4904, 2019.

[72] M. Halpern, Y. Zhu, R. Peri, and V. J. Reddi, “Mosaic: cross-
platform user-interaction record and replay for the fragmented
android ecosystem,” in 2015 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS). IEEE, 2015, pp.
215–224.

[73] J.-f. Huang, “Appacts: Mobile app automated compatibility testing
service,” in 2014 2nd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering. IEEE, 2014, pp. 85–90.

[74] T. Ki, C. M. Park, K. Dantu, S. Y. Ko, and L. Ziarek, “Mimic: Ui
compatibility testing system for android apps,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 246–256.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 18

[75] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Au-
tomated testing of android apps: A systematic literature review,”
IEEE Transactions on Reliability, vol. 68, no. 1, pp. 45–66, 2018.

[76] Android fragmentation report, 2015. [Online]. Available: https:
//www.opensignal.com/sites/opensignal-com/files/data/
reports/global/data-2015-08/2015 08 fragmentation report.pdf

[77] B. Silva, C. Stevens, N. Mansoor, W. Srisa-An, T. Yu, and
H. Bagheri, “Saintdroid: Scalable, automated incompatibility de-
tection for android,” in 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2022,
pp. 567–579.

