
Bridging Design and Development with Automated Declarative
UI Code Generation

Ting Zhou∗
tingzhou27@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

Yanjie Zhao∗
Yanjie_Zhao@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

Xinyi Hou
xinyihou@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

Xiaoyu Sun
Xiaoyu.Sun1@anu.edu.au

The Australian National University
Australia

Kai Chen†
kchen@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

Haoyu Wang†
haoyuwang@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

ABSTRACT

Declarative UI frameworks have gained widespread adoption in
mobile app development, offering benefits such as improved code
readability and easier maintenance. Despite these advantages, the
process of translating UI designs into functional code remains chal-
lenging and time-consuming. Recent advancements in multimodal
large language models (MLLMs) have shown promise in directly
generating mobile app code from user interface (UI) designs. How-
ever, the direct application of MLLMs to this task is limited by
challenges in accurately recognizing UI components and compre-
hensively capturing interaction logic.

To address these challenges, we propose DeclarUI, an auto-
mated approach that synergizes computer vision (CV), MLLMs,
and iterative compiler-driven optimization to generate and refine
declarative UI code from designs. DeclarUI enhances visual fi-
delity, functional completeness, and code quality through precise
component segmentation, Page Transition Graphs (PTGs) for mod-
eling complex inter-page relationships, and iterative optimization.
In our evaluation, DeclarUI outperforms baselines on React Na-
tive, a widely adopted declarative UI framework, achieving a 96.8%
PTG coverage rate and a 98% compilation success rate. Notably,
DeclarUI demonstrates significant improvements over state-of-
the-art MLLMs, with a 123% increase in PTG coverage rate, up to
55% enhancement in visual similarity scores, and a 29% boost in
compilation success rate. We further demonstrate DeclarUI’s gen-
eralizability through successful applications to Flutter and ArkUI
frameworks. User studies with professional developers confirm
that DeclarUI’s generated code meets industrial-grade standards
in code availability, modification time, readability, and maintain-
ability. By streamlining app development, improving efficiency, and
fostering designer-developer collaboration, DeclarUI offers a prac-
tical solution to the persistent challenges in mobile UI development.

1 INTRODUCTION

As the mobile app ecosystem continues to expand, with a constant
influx of new apps entering the market, the development of user
interfaces (UIs) has evolved to meet the increasing demands for

∗Ting Zhou and Yanjie Zhao are the co-first authors.
†Corresponding authors.

better user experiences and more efficient development processes.
Traditional imperative UIs, which specify step-by-step instructions
for rendering UI elements, have given way to declarative UIs, which
describe the desired state of the UI rather than the sequence of oper-
ations to achieve it [30, 54]. Declarative UIs offer several advantages
over their imperative counterparts, such as improved maintainabil-
ity, testability, and separation of concerns by decoupling the UI
logic from the underlying implementation details.

The adoption of declarative UI frameworks in mobile app de-
velopment has become widespread due to these benefits [21, 30].
However, while these frameworks have simplified many aspects of
UI development, they have not significantly reduced the amount of
manual coding required. In real-world scenarios, the development
process typically begins with the design of the UI [42], followed by
the complex and time-consuming task of translating these visual
designs into functional declarative UI code. This process requires
developers to manually map visual elements to their corresponding
implementation details, which remains prone to errors and can
be particularly challenging despite the advantages of declarative
frameworks. Consequently, there is a need for automated tools

to streamline declarative UI code generation directly from

UI designs.
Despite this evident need, current research efforts in this area

are still inadequate. Some methods rely on heuristics or machine
learning models to extract UI components and layout information
from design images [7, 10], but they often struggle with complex de-
signs and lack ability to handle interactive logic. Other approaches
use program synthesis techniques to generate code from natural
language descriptions [56], but they require detailed specifications
and cannot directly interpret visual designs. Researchers have also
explored generating UI code across different frameworks [4, 14],
but these approaches are carried out on traditional imperative UI
frameworks and cannot be extended to declarative UI frameworks.
In summary, existing research falls short in addressing spe-

cific challenges of automatically generating declarative UI

code for real-world development scenarios and lacks ability

to generalize across different UI frameworks.
Recent advancements inmultimodal large languagemodels (MLLMs)

have opened up new possibilities for generating code from visual
inputs. MLLMs, which integrate image processing capabilities into

ar
X

iv
:2

40
9.

11
66

7v
1

 [
cs

.S
E

]
 1

8
Se

p
20

24

Conference’17, July 2017, Washington, DC, USA T Zhou, Y Zhao, X Hou, X Sun, K Chen, and H Wang

large language models (LLMs), have demonstrated superior per-
formance in understanding and interpreting visual information
compared to traditional computer vision (CV) models based on con-
volutional neural networks (CNNs) [6, 55, 61]. Furthermore, LLMs
have exhibited remarkable proficiency in various code intelligence
tasks, such as code generation [12, 13, 32, 40], translation [17, 33],
summarization [2, 8, 23, 27], and repair [16, 39, 59, 60]. The synergy
between visual comprehension and code generation abilities within
MLLMs presents a promising avenue for translating UI designs into
functional code, bridging the gap between visual representations
and programmatic implementations.

Despite the powerful image understanding and code generation
abilities of MLLMs, directly applying them to UI code generation
faces several significant challenges. Imprecise component recog-

nition often occurs due to the complexity of UI designs and the
lack of explicit annotations. MLLMs also struggle with a limited

understanding of interactive logic, failing to accurately infer
navigation flow and event handling from static images. Further-
more, they often generate inconsistent behavior across pages,
producing code that may work for individual screens but fails to
maintain coherence in a multi-page app. Lastly, the generated code
frequently suffers from reliability and compilation issues, con-
taining syntax errors or violating framework-specific conventions.
These challenges underscore the need for a specialized approach
that can bridge the gap between MLLMs’ capabilities and the spe-
cific requirements of declarative UI code generation, addressing
accuracy, consistency, and reliability in the process.

To fill this gap, we propose DeclarUI, a novel approach to en-
hance MLLM-based declarative UI code generation from UI designs.
DeclarUI integrates advanced CV techniques with MLLMs to de-
compose complex UI designs into structured component informa-
tion. We introduce the Page Transition Graph (PTG) to represent
the app’s navigation logic, which, combined with the structured
component information, forms a comprehensive prompt for the
MLLM. After initial code generation, DeclarUI employs an iter-
ative refinement process, performing navigational integrity and
compilation checks to identify and rectify common errors. This
multi-stage approach ensures the generated UI code is both visually
accurate and functionally robust across multiple pages.

In summary, our key contributions are as follows:
• We propose DeclarUI, an approach that enhances MLLM-
based declarative UI code generation fromUI designs. DeclarUI
combines CV techniques with MLLMs to decompose UI de-
signs into structured component information, introduces the
PTG to represent navigation logic, and employs an iterative
refinement process.

• Our study compiled a dataset of 50 top-ranked UI design sets
(50% mockups, 50% app screenshots) from design websites
and app stores across 10 categories. For React Native [47],
DeclarUI significantly outperformed state-of-the-artMLLMs
like Claude-3.5 [1]1 and GPT-4o [44] in generating UI code.
DeclarUI achieved a 123% improvement in PTG coverage
rate, up to 55% increase in visual similarity scores, and a
29% higher compilation success rate. Furthermore, DeclarUI
demonstrated strong generalization to Flutter [22] andArkUI [29],

1The specific reference to “Claude-3.5” in this paper refers to Claude 3.5 Sonnet.

effectively bridging UI designs and functional declarative UI
code across frameworks.

• We conducted a user study with professional developers to
evaluate the performance of DeclarUI. The results demon-
strate that DeclarUI significantly outperforms the baseline
in terms of code availability (4.97 vs. 4.15), modification
time (4.03 vs. 2.45), readability (4.62 vs. 3.75), and maintain-
ability (4.55 vs. 3.37). Developers reported that the UI code
generated by DeclarUI meets industrial-grade standards in
multiple dimensions, highlighting its potential to streamline
app development processes and improve designer-developer
collaboration.

2 BACKGROUND AND MOTIVATIONS

Click

(a1) Account page (a2) LazFlash page (a3) Home page

Click

(a) Screenshots of an app named “com.lazada.android”.

(b1) Account page (b2) LazFlash page (b3) Home page

Click Click

No
button

(b) UI rendering of the generated UI code by Claude-3.5.

Figure 1: Motivating example comparing the original app

screenshots with the rendering of code generated by an

MLLM. Please note that this paper focuses on code genera-

tion evaluation and does not consider the impact of image

assets on the generation process.

The rapid advancement of MLLMs has ushered in a new era of
possibilities for automating mobile app development. Models such
as OpenAI’s DALL-E [46] andGoogle’s Imagen [48] have showcased

Bridging Design and Development with Automated Declarative UI Code Generation Conference’17, July 2017, Washington, DC, USA

remarkable abilities in generating images and text from natural
language prompts, inspiring researchers to explore their potential
in generating app code directly from UI design mockups or app
screenshots [28, 52, 58]. This innovative approach holds the promise
of streamlining the app development process, potentially allowing
designers to transform their visual concepts into functional UI code
with unprecedented ease and speed.

Unfortunately, despite the exciting potential of MLLMs for UI
code generation, current approaches face significant challenges
when processing raw UI design mockups or screenshots. In Fig-
ure 1, we provide an example of a shopping app named “com.lazada.
android” [26], sourced from Google Play, to illustrate some of the
issues with generating UI code using an MLLM, i.e., Claude-3.5:
Imprecise Component Recognition. The MLLM struggles with
accurate identification and rendering of UI components. As evident
in Figure 1(b1), the generated Account page lacks several crucial
elements present in the original design (Figure 1(a1)). Most notably,
the LazFlash button is missing, which is a critical component for
navigation within the app. This omission demonstrates that MLLMs
may not fully capture all the necessary visual elements, potentially
leading to incomplete or inaccurate UI implementations.
Limited Understanding of Interactive Logic. UI design encom-
passes more than just visual elements; it includes complex inter-
action patterns and user experience considerations. The MLLM
faces difficulties in accurately interpreting the designer’s intentions
and the relationships between different elements. This is clearly
illustrated by the lack of navigation logic in the generated UI code.
The arrows with crosses in Figure 1(b) indicate that the expected
transitions between pages (such as from the Account page to the
LazFlash page) are not implemented in the generated code, despite
being clearly present in the original designs shown in Figure 1(a).
Inconsistent Behavior Across Pages. The MLLM struggles to
recognize and implement consistent behaviors across different
pages of an app. This challenge is exemplified in Figure 1, where
both the Account page (a1) and the Home page (a3) should navigate
to the LazFlash page (a2) when the LazFlash button is clicked. How-
ever, the generated UI code fails to maintain this consistency, as
indicated by the crossed-out arrows in Figure 1(b). This suggests
that MLLMs have difficulty in analyzing and implementing complex
attention patterns across multiple screenshots, potentially leading
to inconsistent user experiences in the generated app.
Code Reliability and Compilation Issues. The output from the
MLLMs can be unpredictable, often resulting in code that contains
compilation errors or runtime issues. While not directly visible in
Figure 1, this challenge is implicit in the discrepancies between the
original app screenshots and the rendered UI from the generated
code. These issues necessitate significant human intervention to cor-
rect errors and ensure the code is functional, potentially offsetting
the time-saving benefits of using MLLMs for UI code generation.

These challenges underscore the current limitations of MLLM-
based approaches in UI code generation. While the potential for
automating app development is promising, significant improve-
ments in component recognition, understanding of interactive logic,
cross-page consistency, and code reliability are necessary before
MLLMs can reliably transform visual designs into fully functional
UI code. Addressing these challenges will be crucial for realizing the

vision of streamlined app development through AI-assisted code
generation.

Our Solutions. To address the issue of imprecise component
recognition, we leverage advanced CV techniques. By integrating
the Grounding DINO object detection model [38] with the Segment
Anything image segmentation model [34], we are able to precisely
isolate individual components within UI designs. This preprocess-
ing step significantly enhances the MLLM’s ability to recognize
UI elements, ensuring that the generated code more accurately re-
flects the design intent. To tackle the limitations in understanding
interactive logic and maintaining consistent behavior across pages,
we introduce the concept of Page Transition Graph (PTG). The
PTG serves as a structured representation that clearly delineates
the navigation logic between different pages. By providing this
high-level abstraction to the MLLM, we compensate for the model’s
weaknesses in comprehending complex inter-page relationships,
thereby generating interaction logic that more closely aligns with
the designer’s intentions. Finally, to improve code reliability and
reduce compilation errors, we implement an iterative refinement

process. This mechanism not only checks the navigational integrity
of the MLLM-generated code but also performs compilation checks,
ensuring consistent code quality. This approach significantly re-
duces the need for manual intervention, lowering time costs while
simultaneously improving the overall quality of the generated code.

3 APPROACH

The workflow of DeclarUI, as illustrated in Figure 2, starts with
UI designs as input. These designs include high-quality Figma [20]
design mockups and screenshots of Google Play [25] apps. Design
mockups typically include both visual elements and text-based
specifications, providing comprehensive design information. While
text-based design specifications are readily interpretable by LLMs,
DeclarUI aims to address more challenging scenarios where only
visual designs are available. Therefore, DeclarUI processes both
sources uniformly as image data, focusing exclusively on visual
content. This unified image-based analysis allows DeclarUI to pro-
cess diverse inputs consistently, whether they are design mockups
or app screenshots.

DeclarUI preprocesses the input through two key steps: PTG
Construction (§ 3.1), which captures navigation logic, and UI

Component Extraction and Representation (§ 3.2), which uti-
lizes CV techniques. Subsequently, the Prompt Synthesis step
(§ 3.3) integrates the preprocessed data—including the generated
PTG, component analysis results, and the complete UI screen-
shot—into a comprehensive prompt. This prompt serves as the
foundation for the MLLM to generate complete UI code. Lastly, an
Iterative Code Refinement process (§ 3.4) checks for errors and
navigation absence, ensuring the reliability of the final code output.

3.1 PTG Construction

To address challenges rooted in the complexities of modern UI
designs and MLLM limitations, we propose the utilization of PTGs
as a key tool for capturing and representing UI interaction logic.
We formally define a PTG where nodes represent individual app
pages, and edges represent transitions between pages along with
their triggering conditions. The PTG is defined as a tuple:

Conference’17, July 2017, Washington, DC, USA T Zhou, Y Zhao, X Hou, X Sun, K Chen, and H Wang

Figure 2: The workflow of DeclarUI.

𝑃𝑇𝐺 = (𝑁, 𝐸)
where:
• 𝑁 is a finite set of nodes representing app pages. Each node
includes an 𝑖𝑑 as a unique identifier, a 𝑛𝑎𝑚𝑒 for the page
name, a 𝑡𝑦𝑝𝑒 indicating the page type, and 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 contain-
ing additional properties. 𝑁 is defined as:

𝑁 = {𝑛𝑖 = (𝑖𝑑𝑖 , 𝑛𝑎𝑚𝑒𝑖 , 𝑡𝑦𝑝𝑒𝑖 , 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑖) | 𝑖 = 1, 2, . . . , 𝑘}
• 𝐸 is a set of directed edges representing transitions between
pages. Each edge has specific attributes: 𝑖𝑑 is a unique iden-
tifier for the edge, 𝑛𝑠, 𝑛𝑡 ∈ 𝑁 denote the source and target
nodes, while 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is the condition that triggers the tran-
sition, and 𝑎𝑐𝑡𝑖𝑜𝑛 is the operation performed during the
transition. 𝐸 is defined as:

𝐸 = {𝑒𝑖 = (𝑖𝑑𝑖 , 𝑛𝑠𝑖 , 𝑛𝑡𝑖 , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖 , 𝑎𝑐𝑡𝑖𝑜𝑛𝑖) | 𝑖 = 1, 2, . . . ,𝑚}
Our introduction of PTGs seeks to offer MLLMs a clear, struc-

tured representation of interaction logic, effectively bridging the
gap in expressing dynamic interactions in static UI designs. The
PTG generation process leverages the robust inference capabilities
of MLLMs combined with the analysis of UI designs. Initially, a set
of UI designs is provided to an MLLM, i.e., Claude-3.5, accompanied
by a formal definition of the PTG structure. The MLLM analyzes the
UI designs and generates a comprehensive PTG based on the pro-
vided prompt, as exemplified in Figure 3. It is guided to output its
analysis in a structured JSON format to facilitate further processing
and integration. Figure 4 illustrates an example PTG for a simplified
e-commerce app scenario, designed to clearly demonstrate the PTG
concept. Finally, designers or developers review the generated PTG,
making necessary corrections or additions to ensure the accuracy
and completeness of the captured interaction logic.

PTGs offer a structured representation of UI elements, encom-
passing page hierarchies, transition logic, and navigation rules.
PTGs play a crucial role in addressing key challenges associated

with utilizing MLLMs for UI code generation from designs, in-
cluding limited understanding of interactive logic and inconsistent
behavior across pages.

3.2 UI Component Extraction and

Representation

This process aims to transform the complex UI design images into
a structured representation of components, which is more easily
understood and processed by MLLMs for generating high-quality
code, as illustrated in Figure 5. It includes three stages as follows:
Automated Component Detection. Instead of relying on man-
ual annotation, DeclarUI leverages the capabilities of Grounding
DINO [38], a state-of-the-art object detection model. Grounding
DINO excels in zero-shot object detection, making it ideal for iden-
tifying potential UI components without requiring extensive train-
ing on UI-specific datasets. The model generates bounding boxes
around detected objects, which serve as initial component localiza-
tion.
Automated Instance Segmentation. To achieve precise instance
segmentation of the UI components, DeclarUI employs the Seg-
ment Anything Model (SAM) [34]. The bounding boxes produced
by Grounding DINO act as prompts for SAM, guiding the segmenta-
tion process. This approach combines the strengths of both models:
Grounding DINO’s ability to detect objects without prior training,
and SAM’s capability to produce highly accurate segmentation
masks.
Component Classification and Functional Analysis. We then
leverage an MLLM (i.e., Claude-3.5) to process the segmented com-
ponent images. As shown in Figure 6(a), a carefully designed prompt
is used to extract the component type. The prompt includes the
segmented images and instructs the MLLM to classify the compo-
nent type (e.g., button, text field, dropdown menu, etc.) and infer its
potential functionality within the UI. This step utilizes the MLLM’s

Bridging Design and Development with Automated Declarative UI Code Generation Conference’17, July 2017, Washington, DC, USA

Given the following set of UI design images:
[Image Set]
And the formal definition of a Page Transition Graph (PTG):
[PTG Formal Definition]
Please analyze the UI design images and generate a complete Page Transition Graph (PTG) that captures all
pages, their elements, and the possible transitions between them. Ensure that you include both page-specific
transitions and global transitions where applicable.

Figure 3: Example of prompt used to construct PTG.

{
N = [{id: 'login', name: 'Login Page', type: 'login'},

{id: 'home', name: 'Home Page', type: 'list', props: {layout: 'grid', itemType: 'product'}},
{id: 'search', name: 'Search Page', type: 'search'},
{id: 'product', name: 'Product Detail Page', type: 'detail', props: {layout: 'vertical'}},
{id: 'cart', name: 'Shopping Cart Page', type: 'list', props: {layout: 'vertical', itemType:

'cartItem'}}],

E = [{id: 'login->home', from: 'login', to: 'home', conditions: 'isLoggedIn'},
{id: 'home->search', from: 'home', to: 'search', actions: 'passSearchParams'},
{id: 'home->product', from: 'home', to: 'product', actions: 'passProductId'},
{id: 'search->product', from: 'search', to: 'product', actions: 'passProductId'},
{id: 'product->cart', from: 'product', to: 'cart', actions: 'addToCart'},
{id: 'cart->product', from: 'cart', to: 'product', actions: 'passProductId'}]

}

Figure 4: Example of the PTG for a simplified e-commerce

app scenario.

(a) Original UI
screenshot

(b) DINO-
dectected UI

(c) SAM-
segmented UI

(d) Component clas-
sification and func-
tional analysis

Figure 5: Example of the UI component extraction process.

understanding of UI design patterns and its ability to reason about
the purpose of visual elements.

The output of this three-stage process is a comprehensive, struc-
tured representation of the UI design images. This representation
includes precise spatial information and instance segmentation
masks for each component, type classifications, and inferred func-
tional descriptions.

3.3 Prompt Synthesis

Prompt synthesis integrates the preprocessed data into a compre-
hensive prompt for the MLLM, enhancing its ability to generate
UI code that accurately reflects both the visual elements and the
underlying interactive logic of the original design. This process
combines three key elements: the PTG, which provides a structured
representation of the navigation logic and inter-page relationships;

component analysis results, detailing UI element types and their
functionalities; and the complete UI images, providing visual
context. Together, these components give the MLLM a holistic
understanding of both the structure and visual design, enabling
accurate and functionally complete UI code generation. Figure 6(b)
illustrates an example of the synthesized prompt.

The resulting prompt is fed into the MLLM for the initial code
generation, setting the stage for the subsequent iterative code re-
finement process, where the generated code undergoes navigation
and compilation checks for further improvement.

3.4 Iterative Code Refinement

The initial code generated by MLLMs may fail to implement the
navigation logic defined in the PTG fully, contain syntax errors,
or exhibit logical inconsistencies. To address these potential issues
and ensure high-quality code output, DeclarUI employs a two-
pronged strategy for code refinement: navigation consistency

validation and compile-time error correction. This iterative
process systematically identifies and rectifies discrepancies between
the generated code and the intended app structure and behavior.
Navigation Consistency Validation. To ensure fidelity to the
PTG, DeclarUI implements a comprehensive navigation consis-
tency validation process using static code analysis techniques. This
process begins by parsing the generated code to extract all im-
plemented navigation logic, specifically identifying framework-
specific navigation statements without executing the code. The
extracted navigation paths are then meticulously compared against
the PTG definition, with a primary focus on identifying any missing
transitions that are present in the PTG but absent in the generated
code. This static analysis approach allows for additional naviga-
tion options in the code that may not be explicitly defined in the
PTG, providing flexibility for potential enhancements or alternative
user flows. Upon completion of the analysis, a detailed report is
generated, highlighting any navigation inconsistencies, specifically
focusing on missing transitions. This report serves as a crucial in-
put for the MLLM in subsequent refinement iterations, offering
targeted guidance to address specific navigation-related omissions
and ensuring comprehensive implementation of the intended user
journey as defined in the PTG.
Compile-Time Error Correction.An integral part of DeclarUI’s
iterative refinement process is leveraging compiler feedback to de-
tect and correct syntactic errors in the generated code. This is
achieved through an automated compilation checking script that

Conference’17, July 2017, Washington, DC, USA T Zhou, Y Zhao, X Hou, X Sun, K Chen, and H Wang

You are an engineer proficient in React Native.
Task Description
I will provide you with some common component types in
React Native, a complete app screenshot from a real
mobile app and several component images extracted from
the mobile app screenshot.
Your task is to match each component image to a possible
component type in React Native and provide a brief
description of the possible functionality of that component.
To conclude your answer, you should label each
component with its matched type using the format
‘@@@{component type}@@@’.
Common Component Type
[Common Component Types]
Complete App Screenshot and Component Images
[Complete App Screenshot]
[Component Image Set]

(a) Example of the prompt used to extract component types.

You are an engineer proficient in React Native.
Task Description
I have a set of UI design images that need to be converted
into fully functional React Native application code,
including navigation logic between pages. I will now
provide you with the UI image of the page [page name].
Please generate the corresponding React Native code
based on the provided information.
Requirements
[Requirements]
Output Format
[Output Format]
Component Analysis Results
[Component Analysis Results]
PTG
[PTG]
UI Screenshot
[Complete UI Screenshot]

(b) Example of a synthesized prompt.

Figure 6: Examples of the prompts used in § 3.2 and § 3.3.

systematically processes the code using the appropriate develop-
ment tools. The script captures and analyzes compiler error mes-
sages generated during this process. To bridge the gap between
the compiler’s technical output and the MLLM’s natural language
processing capabilities, these error messages are processed and
restructured into clear, actionable instructions. This process in-
volves extracting key information from error messages, including
file names, line numbers, and error descriptions. The extracted in-
formation is then combined with relevant code snippets to form a
structured prompt. This prompt is fed back to the MLLM, enabling
it to make targeted corrections to the code.

Iterative Refinement Process. The code refinement process in
DeclarUI is iterative, designed to continuously enhance the quality
of the generated code. Initially, DeclarUI generates code for each
app page based on the PTG. Then, it undergoes iterative cycles
to check and correct navigation inconsistencies and compile-time
errors. After generating each page’s code, a navigation consistency
check is performed, producing a report of any missing navigation
paths. This report is fed back into the MLLM to address the gaps,
with up to three iterations per page to ensure completeness. Once
all pages are generated and compiled into a project, DeclarUI
conducts a compile-time error analysis. It identifies the relevant
files and error messages, which are passed to the MLLM for targeted
corrections. The MLLM refines the code based on both navigation
and compile-time issues. This process is repeated, with compile-
time error correction limited to three iterations for the entire project
to maintain efficiency. This iterative approach ensures continuous
improvement, addressing specific issues while keeping the process
efficient through iteration limits.

4 EVALUATION

To comprehensively evaluate the performance of DeclarUI, we
designed a series of experiments to address three key research
questions (RQs):
RQ1: Effectiveness. How effective is DeclarUI?HowdoesDeclarUI

perform in comparison to baseline methods when operating
autonomously without human intervention?

RQ2: Ablation Study. How do individual key modules contribute
to the overall performance of DeclarUI?

RQ3: User Study and Manual Repair. How do professional de-
velopers evaluate DeclarUI’s generated UI code compared to
the baseline in real-world scenarios? To what extent is man-
ual effort required to repair compilation failures inDeclarUI’s
output?

4.1 Dataset

We curated a dataset of 50 mobile app UI designs (totaling 250 app
pages), including 25 UI design mockups and 25 app screenshots,
across 10 functional categories. This diversity allows us to assess
the generalizability and robustness of our approach across various
UI design paradigms and app types. We now provide details on the
data sources, selection criteria, and dataset composition.
Data Sources.Our dataset is drawn from twomain sources: Figma [20]
and Google Play [25]. Figma, a leading collaborative design tool,
provides a selection of contemporary, high-quality mobile UI de-
sign mockups. Google Play, the official app distribution platform
for Android devices, serves as our source for downloading apks,
which we subsequently install on an emulator to manually capture
screenshots. By incorporating cutting-edge designs from Figma and
real-world apps from Google Play, we ensure that our approach
is evaluated against a dataset that reflects both ideal design prac-
tices and practical implementation challenges in the mobile app
development landscape.
Selection Criteria. To ensure diversity in our dataset, we em-
ployed strict selection criteria. We classified mobile apps into 10
functional categories, including Social Networking, Entertainment,
Productivity, Education,Wellness, Finance, Shopping & E-commerce,

Bridging Design and Development with Automated Declarative UI Code Generation Conference’17, July 2017, Washington, DC, USA

Travel & Navigation, News & Information, and Utility & Practical

Tools. For Figma designs, we selected 194 mobile UI design mock-
ups with over 300 followers, indicating their recognition within
the design community. We then excluded designs that didn’t meet
our page count requirements (i.e., less than five pages) or weren’t
specifically designed for mobile apps. For Google Play apps, we
focused on those ranking in the top 10 by download count within
their respective categories, ensuring the representation of popular
and widely used apps. We excluded paid apps and those requiring
complex registration processes. From each source, we selected 3-5
designs or apps per category that met our criteria. This range was
established to accommodate potential scarcity in certain categories
while maintaining a minimum threshold for diversity. For each cat-
egory, we ultimately collected no fewer than five designs; for those
with more than five, we randomly selected five for experimentation
to control experimental costs while ensuring research quality and
statistical significance.
Dataset Composition. The composition of our dataset is struc-
tured to provide a balanced and comprehensive representation of
mobile UI designs. We selected 50 apps in total, equally divided
between Figma designs and Google Play apps. These 50 apps are dis-
tributed across 10 functional categories, with five apps per category.
The categorization was designed to encompass the broad spectrum
of mobile app functionalities, aiming to provide a comprehensive
representation of the app ecosystem. For each app, we captured
five logically connected pages, allowing us to analyze the flow and
interaction between related interfaces.

4.2 Experimental Setup

4.2.1 Evaluation Metrics. Our evaluation employs a set of met-
rics to assess the performance of DeclarUI, encompassing visual
fidelity, navigation logic, code quality, and practical usability.

To evaluate visual fidelity, we utilize two metrics:

• CLIP score [50]: This metric quantifies the semantic simi-
larity between the generated and original UIs, providing an
indicator of how well the generated UI captures the intended
visual elements and overall design concept.

• SSIM (Structural Similarity IndexMeasure) score [53]: It
assesses the layout and compositional accuracy, focusing on
the spatial arrangement and structural similarities between
the generated and original UIs.

The completeness of navigation logic implementation is mea-
sured by PTG Coverage Rate (PCR). This metric, manually cal-
culated by human evaluators, assesses the alignment between the
implemented app structure and the intended design. It compares
the predefined PTG (e.g., Figure 4) with the UI Transition Graph
(UTG) of the apps generated by DeclarUI. The UTG is obtained
using DroidBot [36], a widely adopted automated testing tool. The
PCR is calculated as:

𝑃𝐶𝑅 =
|PTGedges ∩ UTGedges |

|PTGedges |
× 100%

As described in § 3.4, we apply a compile-time error correction
process, allowing up to three compilation attempts for each app.
This iterative process aims to maximize the number of successfully

compiled apps while minimizing manual intervention. We then
employ different metrics based on the compilation outcome.

For successfully compiled apps (within three iterations), we cal-
culate:

• Compilation Success Rate (CSR) [56]: This measures the
percentage of generated app code that is compiles success-
fully without errors after our automated iterative refinement
process, without any human intervention:

𝐶𝑆𝑅 =
Number of successfully compiled apps

Total number of apps
× 100%

• Average Compilation Iteration Count (ACIC): This met-
ric indicates code generation efficiency and is computed as:

𝐴𝐶𝐼𝐶 =

∑𝑛
𝑖=1 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖

𝑛

where 𝑛 is the total number of successfully compiled apps
and 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖 is the number of compilation attempts for the
𝑖-th app (maximum 3). A lower ACIC suggests more efficient
initial code generation.

For apps that fail to compile after three iterations (termed compilation-

failed apps), we measure:
• Average Manual Correction Time (AMCT): This quan-
tifies the average time required for human developers to
manually correct remaining errors in the generated code:

𝐴𝑀𝐶𝑇 =
Total manual correction Time

Number of compilation-failed apps

AMCT provides insight into the practical efficiency gains of
our method and the potential reduction in developer work-
load.

To provide a comprehensive assessment of the generated code’s
practical usability and efficiency, we employ user study met-

rics [11]. These metrics evaluate:
• Code Availability: Quantifies the proportion of usable code
in the generated output.

• Modification Time: Measures time to adapt generated code
to production standards.

• Readability: Assesses the structural understandability of
the code.

• Maintainability: Measures the ease of adapting the code to
new requirements.

Scores for these metrics are assigned using predefined scales and
intervals, allowing for a nuanced evaluation of the code’s quality
from a developer’s perspective.

4.2.2 Baselines. We compare DeclarUI against two baselines:
GPT-4o and Claude-3.5 (specifically, Claude-3.5-Sonnet-20240620).
Both baselines use unprocessed UI design images without our cus-
tom prompting techniques or additional processing. To ensure a fair
comparison and avoid underestimating the capabilities of MLLMs,
we meticulously designed the prompts for the baselines. These
prompts adhere to established practices from existing image-to-
code research [52, 56, 58] and widely-adopted techniques for LLM
utilization [18, 51]. Both baseline approaches are evaluated within
the React Native framework.

Conference’17, July 2017, Washington, DC, USA T Zhou, Y Zhao, X Hou, X Sun, K Chen, and H Wang

4.2.3 Implementation Details. Our experiments cover three popu-
lar mobile development frameworks that employ a declarative UI
paradigm, i.e., React Native, Flutter, and ArkUI. For each framework,
we generate UI code using our DeclarUI approach and evaluate its
performance. All experiments were conducted on a server equipped
with dual NVIDIA GeForce RTX 3090 GPUs, 64-core AMD EPYC
processors, and 512GB of RAM. The code generation process was
automated with custom Python scripts, totaling 2,935 lines, to min-
imize human intervention and bias.

4.3 Effectiveness (RQ1)

To address RQ1, we conducted experiments on a carefully curated
dataset comprising 50 app UI designs, each containing five pages,
as stated in § 4.1. Given their status as state-of-the-art MLLMs, we
selected GPT-4o and Claude-3.5 as base models to power DeclarUI.
The experiment’s input consisted of these 50 app UI designs, while
the output was the code generated by DeclarUI for each app’s
five pages. We integrated the generated code directly into an initial
project in the IDE (i.e., Android Studio for React Native) without
any manual intervention. The project was then packaged into an
APK, which we installed and ran on the Android Studio built-in
emulator to render the UI. We then evaluated the results according
to the metrics outlined in § 4.2.1.

As shown in Table 1, the evaluation results reveal that DeclarUI
(Claude-3.5) outperforms DeclarUI (GPT-4o) in several key areas.
For example, DeclarUI (Claude-3.5) achieved a remarkable 98%
Compilation Success Rate (CSR), meaning that only one out of the
50 apps failed to compile automatically. In contrast, DeclarUI (GPT-
4o) had six apps that didn’t compile under automated conditions.
Upon analyzing the single app that failed to compile with DeclarUI
(Claude-3.5), we found that the issue was due to the app’s use of non-
existent file resources, which caused it to fail multiple compilation
checks.

While DeclarUI (GPT-4o) showed a marginally lower Average
Compilation Iteration Count (ACIC) – 10 iterations for 44 com-
piled apps versus 11 for 49 apps with DeclarUI (Claude-3.5) – this
advantage was minimal, differing by only 0.01 iterations per app.
Despite this slight edge in iteration efficiency, DeclarUI (GPT-4o)
lagged behind in other crucial metrics. The SSIM score showed a
particularly significant lead of 17.2% (0.68 vs. 0.58), indicating that
DeclarUI (Claude-3.5) excels in accurately reproducing the struc-
tural elements of the original UI. Moreover, it exhibited a better
PTG Coverage Rate (PCR), suggesting a more comprehensive under-
standing of navigation logic. These results suggest that while both
models show promise, DeclarUI (Claude-3.5) offers a more ro-

bust and accurate solution for automating UI code generation

from designs. Its higher CSR, coupled with better visual fidelity
and navigation logic understanding, positions it as the more reli-
able choice for practical applications. The marginally higher ACIC
for DeclarUI (Claude-3.5) is a small trade-off for the significant
improvements in other areas, particularly given the importance of
visual accuracy and functional correctness in UI development.
DeclarUI vs. Baselines. As detailed in § 4.2.2, we carefully se-
lected and configured our baselines for comparison. The results,
presented in Table 1, reveal significant limitations in using GPT-4o
and Claude-3.5 directly for declarative UI code generation from

mobile app UI designs. Under fully automated conditions, the base-
line methods achieved a CSR of 76% (GPT-4o) and 74% (Claude-3.5).
Compilation failures primarily stemmed from issues such as using
non-existent packages or components, inadequate special charac-
ter handling, and component utilization without proper package
imports. While Baseline (GPT-4o) showed a slight edge in visual
fidelity compared to Baseline (Claude-3.5), the advantage was mar-
ginal, with both falling short of our DeclarUI’s performance. No-
tably, there was a stark contrast in PCR between the baselines,
with Baseline (GPT-4o) achieving 1.4% and Baseline (Claude-3.5)
reaching 43.4%. This disparity highlights Claude-3.5’s substantial
advantage in logical comprehension over GPT-4o in the baseline
scenario.

Comparing DeclarUI to the baselines reveals significant im-
provements across key metrics. The PCR, a crucial indicator of an
app’s navigational structure implementation, demonstrates DeclarUI’s
substantial advantage. In the React Native framework, DeclarUI
achieves 88.6% and 96.8% coverage with GPT-4o and Claude-3.5 re-
spectively, far surpassing the corresponding baseline methods (1.4%
and 43.3%). This marked improvement suggests DeclarUI’s en-
hanced ability to capture and implement complex app structures ac-
curately. The compilation statistics further underscore DeclarUI’s
superiority in code quality. The 98% CSR of DeclarUI (Claude-3.5)
compared to Baseline (Claude-3.5)’s 74%, and DeclarUI (GPT-4o)’s
88% versus Baseline (GPT-4o)’s 76%, clearly demonstrate DeclarUI’s
significant outperformance of baselinemethods. This high CSR, cou-
pled with low iteration requirements (only 11 iterations needed for
49 successfully compiled apps), indicates that DeclarUI generates
more robust, deployment-ready code. Based on the comprehensive
performance of Claude-3.5 and GPT-4o in both baseline scenarios
and with DeclarUI, we have selected Claude-3.5 as the base model
for our subsequent experiments.
Generalization Capabilities. The results for Flutter and ArkUI
presented in Table 1 demonstrate DeclarUI’s robust performance
across diverse UI frameworks, highlighting its impressive general-
ization capabilities and adaptability. Consistent with our evaluation
approach for React Native, we compiled Flutter projects in Android
Studio and ArkUI projects in DevEco Studio, integrating the gener-
ated code directly into initial projects without manual intervention.

Flutter emerges as particularly noteworthy, withDeclarUI achiev-
ing an exceptional PCR of 99.4%. This near-perfect score indicates
DeclarUI’s profound understanding and accurate implementation
of navigation logic within the Flutter ecosystem. React Native and
ArkUI also display impressive results, with PCRs of 96.8% and 95.9%
respectively, further reinforcing DeclarUI’s versatility across dif-
ferent framework paradigms. The CSRs across frameworks, ranging
from 86% to 98%, reveal both DeclarUI’s strengths and areas for po-
tential improvement. Specifically, the slightly lower CSR for ArkUI
presents an intriguing avenue for future investigation. We explore
potential strategies for improving DeclarUI’s performance with
ArkUI in § 5.1, where we discuss the implementation of advanced
techniques to potentially bridge this performance gap.

Bridging Design and Development with Automated Declarative UI Code Generation Conference’17, July 2017, Washington, DC, USA

Table 1: Comprehensive performance metrics across different methods and frameworks.

Framework Method CLIP Score SSIM Score PCR (%) ACIC CSR (%)

React Native

Baseline (GPT-4o) 0.66 0.44 1.4 - 76.0
Baseline (Claude-3.5) 0.65 0.41 43.3 - 74.0
DeclarUI (GPT-4o) 0.87 0.58 88.6 0.23 88.0

DeclarUI (Claude-3.5) 0.88 0.68 96.8 0.22 98.0
Flutter DeclarUI (Claude-3.5) 0.85 0.68 99.4 0.82 92.0
ArkUI DeclarUI (Claude-3.5) 0.85 0.66 95.9 1.62 86.0

Answer to RQ1: DeclarUI demonstrates high effectiveness in

generating functional UI code across multiple frameworks, signifi-

cantly outperforming baselines. It achieves up to 98% CSRs, superior

visual fidelity, and navigation logic implementation (PCR up to

99.4%). With strong generalization across React Native, Flutter,

and ArkUI, and Claude-3.5 as the preferred base model, DeclarUI

proves to be a robust solution for automated UI development, de-

spite some room for improvement in ArkUI, which will be discussed

in § 5.1.

4.4 Ablation Study (RQ2)

To assess the contribution of each key component in DeclarUI,
we conducted two ablation studies on a subset of 13 apps from
our dataset. This selection was based on CLIP score distributions
across app categories, ensuring diverse representation. Our sample
includes: three apps from categories with the lowest median CLIP
scores, five from categories with median performance, three from
categories showing high CLIP score variability, one from a category
with low variability, and one from a category exhibiting multiple
outliers in CLIP scores. This diverse sample spans various com-
plexities and visual effects, providing a robust basis for evaluating
DeclarUI’s performance across different scenarios. We focused on
two key aspects: the impact of CV techniques, and the role of PTG
and the refinement process. It’s important to note that we couldn’t
isolate PTG construction alone due to its inherent coupling with
the iterative refinement process, as the navigation checks during
refinement rely on the PTG. These studies help isolate the effects
of these components on the overall performance of DeclarUI.
Impact of CV techniques on UI Generation. In this ablation
study, we removed the UI component extraction and representation
module while retaining the PTG and refinement processes to inves-
tigate the impact of CV techniques on UI generation. The results in
Table 2 illustrate that the absence of the UI component extraction
and representation module led to a significant decrease in visual
similarity scores, with the SSIM score dropping from 0.72 to 0.57,
and the CLIP score slightly decreasing from 0.90 to 0.88. These
reductions in structural and semantic similarity metrics directly
reflect CV techniques’ impact on the MLLM’s component recogni-
tion capabilities. The decrease in visual similarity scores without
the combination of CV techniques indicates that MLLMs struggle
more with accurately identifying and reproducing individual UI
elements, as evidenced by the drop in PCR from 96.8% to 95.1%.
Impact of PTG and Refinement Process. In the second ablation
study, we removed both the PTG and refinement components, re-
lying solely on the UI component extraction and representation
for UI generation. Although the visual similarity scores remained

relatively high based on Table 2, the PCR dropped drastically to
23.1% and the CSR decreased to 80.0%. These results emphasize the
critical role of PTG and refinement in ensuring accurate navigation
logic, code compilability, and overall UI quality.

Answer to RQ2: The combination of CV techniques contributes to

the visual accuracy of UI generation, while the PTG and refinement

processes ensure functional correctness and high code quality. The

synergistic integration of these three components forms the core

technology of DeclarUI, enabling the generation of high-fidelity

and functionally-correct UIs.

4.5 User Study and Manual Repair (RQ3)

4.5.1 User Study. To comprehensively evaluate the performance of
our automatic generationmethod, we focused not only on the visual
quality of the rendered UI but also on the overall quality of the
generated code. In real-world application scenarios, particularly in
industry settings, code readability, availability, and maintainability
are three crucial evaluation dimensions [11, 43]. To assess these
aspects, we conducted a user study with experienced developers.
Procedures. We recruited five React Native developers with an
average of over two years of experience. All participants were
compensated $50 for their time and expertise. Each participant
reviewed 12 apps with UI code generated by DeclarUI and Base-
line (Claude-3.5). These apps were carefully selected based on their
CLIP scores: three well-performing apps (CLIP score > 0.85), six
average-performing apps (0.8 < CLIP score < 0.85), and three poor-
performing apps (CLIP score < 0.8), all randomly chosen within
their respective groups. For code availability evaluation, partici-
pants modified each set of UI page code to meet basic business
requirements. We tracked modifications using git, following the
method of Chen et al. [11], mapping scores from 0.8 with each
5% interval corresponding to levels 1-5. After modifying each set,
participants rated its readability and maintainability on a five-point
Likert scale. Code modification time measures the time required to
adjust the code to production standards. We scored this on 5-minute
intervals, with 5 points for completion within 5 minutes and 1 point
for over 20 minutes. To avoid tool bias, participants used Android
Studio, with a 20-minute time limit per app. We recorded modifica-
tion time and collected ratings for each set of UI page code. This
study design allowed us to evaluate the generated code’s quality
through both objective measures (modification time and extent)
and subjective assessments (readability and maintainability ratings)
from experienced professionals.

Conference’17, July 2017, Washington, DC, USA T Zhou, Y Zhao, X Hou, X Sun, K Chen, and H Wang

Table 2: Comprehensive performance metrics across different DeclarUI versions.

Version CLIP Score SSIM Score PCR (%) ACIC CSR (%)

DeclarUI (Full) 0.90 0.72 96.8 0.22 98.0
DeclarUI (without CV) 0.88 0.57 95.1 0 100.0
DeclarUI (without PTG+Refinement) 0.87 0.68 23.1 - 80.0

Table 3: Participant ratings of DeclarUI vs. Baseline across different metrics.

Metric Code Availability Modification Time Readability Maintainability

Baseline Score 4.15 2.45 3.75 3.37
DeclarUI Score 4.97 4.03 4.62 4.55

P-value 9.23E-08 2.20E-10 2.57E-13 1.33E-12

(a) Code Availability

(b) Modification Time

(c) Readability

(d) Maintainability

Figure 7: Heatmaps of user study metrics.

Results. We present the average scores and p-values using the
Mann-Whitney U test in Table 3, while more detailed statistical anal-
yses are visualized using a set of heatmaps in Figure 7. Professional
React Native engineers consistently ratedDeclarUI-generated code
significantly higher in terms of availability, modifiability, readabil-
ity, and maintainability. The substantial improvements observed in
all these metrics were statistically significant (p < 0.05), underscor-
ing the robustness of our findings. Notably, DeclarUI achieved a
near-perfect score in code availability (4.97 out of 5), demonstrating
its exceptional performance in generating immediately usable code.
The marked reduction in modification time (4.03 for DeclarUI
vs. 2.45 for the baseline) indicates that DeclarUI-generated code
requires considerably less effort to adapt to production standards.
This is further evidenced by the fact that users were able to com-
plete modifications on 73.3% of DeclarUI-generated code within
10 minutes. In contrast, 80% of the baseline code required more
than 10 minutes to modify, and the actual modification time for the
baseline is likely underestimated, as 27.1% of this 80% was not

completed even within 20 minutes. Furthermore, the superior
readability (4.62 vs. 3.75) and maintainability (4.55 vs. 3.37) scores
highlight the enhanced long-term value of the code produced by
DeclarUI.
Case Study. To demonstrate DeclarUI’s superiority, we present
concrete examples in Figure 8 and Figure 9. Our analysis reveals
three primary areas where DeclarUI excels over baseline methods:
component fidelity, navigation completeness, and interaction con-
sistency.We illustrate these using the com.amazon.mShop.android.
shopping app [24]. DeclarUI achieves superior component fi-

delity by accurately replicating all elements from the original de-
sign (Figure 8(c)), including the bottom navigation bar omitted by
the baseline (Figure 8(b)). This completeness extends to naviga-

tion completeness (Figure 9). DeclarUI maintains comprehen-
sive navigation pathways (Figure 9(a)), addressing gaps present in
the baseline’s structure (Figure 9(b)). Consequently, our approach
demonstrates improved interaction consistency, particularly in
navigation between related UI components. This consistency is
evident in the uniform navigation patterns to “Orders” from both
“Profile” and “Account” pages (Figure 9(a)), ensuring a more coher-
ent user experience.

Bridging Design and Development with Automated Declarative UI Code Generation Conference’17, July 2017, Washington, DC, USA

(a) Original UI design (b) Baseline (c) DeclarUI

Figure 8: The original UI design image, output from Baseline

(Claude-3.5), and DeclarUI’s generated result.

1
①

Home

Profile

Orders

Account

②

③

④

⑤

⑥

⑦

⑧

(a) DeclarUI UTG

Orders

Profile

Account

①

② ③

④

(b) Baseline (Claude-3.5) UTG

Figure 9: Navigation completeness & interaction consistency.

4.5.2 Manual Repair. To comprehensively assess the human effort
required to repair compilation failures of DeclarUI, we used the
Average Manual Correction Time (AMCT) metric. Our analysis
revealed that for the React Native framework, DeclarUI (Claude-
3.5) required an AMCT of 48s, while DeclarUI (GPT-4o) needed
43.2s. In comparison, Flutter required 62s, and ArkUI took 183s.
These results demonstrate DeclarUI’s efficiency in generating
code that requires minimal manual intervention, highlighting its
superiority across different frameworks.

Answer to RQ3: DeclarUI significantly outperforms the base-

line in code quality, usability, and efficiency. The user study and

case study demonstrate DeclarUI’s superiority in generating high-

quality, readily usable UI code that closely matches original designs.

Notably, DeclarUI requires minimal manual intervention, a char-

acteristic observed consistently across multiple UI frameworks.

5 DISCUSSION

5.1 Retrieval-Augmented Generation (RAG):

Impact and Implications

The performance of DeclarUI across the three frameworks is un-
even, with ArkUI showing relatively poor performance compared
to the others (Table 1). This suboptimal performance likely results
from the MLLM’s limited knowledge of ArkUI, a newer and less
mainstream framework, compared to its more comprehensive un-
derstanding of established frameworks.

To address this challenge, we explored integrating a knowl-
edge graph (KG) [45] to supplement the MLLM’s understanding of
ArkUI. This approach follows a Retrieval-Augmented Generation
(RAG) [19] method to compensate for the MLLM’s lack of knowl-
edge about less mainstream frameworks. When generating UI code,
we first query the KG and then incorporate the retrieved informa-
tion into the prompt. We tested this approach with 20 apps with UI
designs from our dataset, totaling 100 app pages. The results showed
promising improvements: ACIC is relatively reduced by 0.52 (1.1
vs. 1.62), CSR increased by 4% (90% vs. 86%), and AMCT reduced by
139.5s (43.5s vs. 183s). While our preliminary results demonstrated
potential, the improvements were not as significant as anticipated,
primarily due to time constraints limiting the sophistication of our
KG implementation.

Future research should focus on refining the RAG-based ap-
proach, particularly for less common frameworks like ArkUI. This
could involve developing a more comprehensive and sophisticated
KG that captures the intricacies of ArkUI syntax and design pat-
terns. Additionally, exploring techniques to dynamically update the
KG with new framework features and best practices could ensure
the system remains current and effective. Further investigation into
optimizing the integration of KG-retrieved information with the
MLLM’s existing knowledge could potentially yield more substan-
tial performance improvements. Moreover, extending this approach
to other emerging UI frameworks could enhance the versatility and
adaptability of DeclarUI.

5.2 Threat to Validity

Internal Validity. The primary threats stem from our evaluation
metrics and method implementation across different frameworks.

Conference’17, July 2017, Washington, DC, USA T Zhou, Y Zhao, X Hou, X Sun, K Chen, and H Wang

CLIP Score and SSIM, used for UI similarity assessment, may not
fully capture human-perceived UI similarity, potentially overlook-
ing subtle differences crucial to user experience. PTG Coverage,
employed for navigation logic accuracy, ensures implementation
of expected page transitions but may not reflect the actual user
experience of navigation fluidity and intuitiveness. Fortunately, our
user study confirmed the validity of our evaluations, demonstrating
that DeclarUI indeed outperformed the baselines.
External Validity. Our study faces several threats related to the
performance of MLLM influenced by prompt design and the expe-
rience levels of user study participants. Different prompts could
lead to varying results, making it challenging to isolate the true
impact of our approach. Although we selected participants with
similar backgrounds, inherent biases may still affect the results.
Fortunately, Figure 7 showed that participants’ opinions on the
same app were relatively consistent. Another threat involves the
scope and size of our UI design sample. Despite efforts to include
diverse UI designs within the mobile app domain, our sample may
not fully represent all mobile app UI types. The limited sample size
of 50 UI design sets, due to MLLMs’ token cost constraints, may
not capture the full variability of mobile app UIs. Future research
should expand the size and diversity of the UI sample to ensure
comprehensive coverage of mobile app UI types.

6 RELATEDWORK

Mobile App UI-to-Code Generation. Mobile app UI-to-code
translation has seen various approaches in recent years. [4, 14] were
limited by traditional UI frameworks and lacked support for multi-
page apps. [52] explored code generation from natural language
descriptions but struggled with complex designs and fine-grained
component recognition. [7, 9, 10, 57] introduced intermediate rep-
resentations to aid UI code generation, yet still required significant
manual effort to produce the final code. Unlike previous works,
DeclarUI is the first to focus on serving declarative UI frame-
works, combining advanced CV techniques for precise component
recognition with PTG-based inter-page logic capture to enable fully
automated, multi-page mobile app UI code generation.
Image-to-Code Generation. Image-to-code generation research,
particularly in UI generation, has advanced significantly through
three main approaches: Deep Learning-based methods [3–5], CV-
based methods [15, 31, 49], and Multimodal Learning methods [35,
37, 41]. [4] pioneered deep learning techniques to generate code
from GUI screenshots. CV-based methods, exemplified by [31], con-
verted hand-drawn sketches into HTML code, while [49] advanced
this by leveraging GPT-4V and DALL·E 3 to transform screenshots
into functional code. Addressing limitations of single-modal ap-
proaches, Multimodal Learning methods emerged. [37] presented a
multimodal autoregressive model for various vision and language
tasks, including code generation from images. [35] demonstrated
how combining different data types can enhance model robust-
ness and versatility, potentially improving accuracy and contextual
understanding in code generation tasks.

7 CONCLUSION

In this paper, we presented DeclarUI, an approach that combines
CV techniques, MLLMs, and iterative compiler-driven optimization

to generate high-quality declarative UI code from design mock-
ups and screenshots. Our evaluation demonstrates that DeclarUI
outperforms state-of-the-art methods across multiple metrics, in-
cluding PTG coverage rates, visual similarity, average compilation
iteration counts, and compilation success rates. DeclarUI’s multi-
framework compatibility is evidenced by its ability to generalize
across React Native, Flutter, and ArkUI. The positive feedback from
professional developers in our user study underscores DeclarUI’s
practical value. By addressing challenges in component recogni-
tion, interactive logic understanding, and code reliability, DeclarUI
represents a significant advancement in bridging UI design and im-
plementation.

REFERENCES

[1] Anthropic Claude 3.5 [n. d.]. Introducing Claude 3.5 Sonnet | Anthropic. https:
//www.anthropic.com/news/claude-3-5-sonnet

[2] Shushan Arakelyan, Rocktim Jyoti Das, Yi Mao, and Xiang Ren. 2023. Ex-
ploring Distributional Shifts in Large Language Models for Code Analysis.
arXiv:2303.09128 [cs.CL] https://arxiv.org/abs/2303.09128

[3] R. Archana and P. S. Eliahim Jeevaraj. 2024. Deep learning models for digital
image processing: a review. Artif. Intell. Rev. 57, 1 (jan 2024), 33 pages. https:
//doi.org/10.1007/s10462-023-10631-z

[4] Tony Beltramelli. 2017. pix2code: Generating Code from a Graphical User Inter-
face Screenshot. arXiv:1705.07962 [cs.LG] https://arxiv.org/abs/1705.07962

[5] Bo Cai, Jian Luo, and Zhen Feng. 2023. A novel code generator for graphical user
interfaces. Scientific Reports 13 (2023). https://api.semanticscholar.org/CorpusID:
265349539

[6] Jinyuan Chang, Jing He, Jian Kang, and MingcongWu. 2023. Statistical inferences
for complex dependence of multimodal imaging data. arXiv:2303.03582 [stat.ME]
https://arxiv.org/abs/2303.03582

[7] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu.
2018. From UI design image to GUI skeleton: a neural machine translator
to bootstrap mobile GUI implementation. In Proceedings of the 40th Interna-

tional Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18).
Association for Computing Machinery, New York, NY, USA, 665–676. https:
//doi.org/10.1145/3180155.3180240

[8] Fuxiang Chen, Fatemeh Fard, David Lo, and Timofey Bryksin. 2022. On the
Transferability of Pre-trained Language Models for Low-Resource Programming
Languages. arXiv:2204.09653 [cs.PL] https://arxiv.org/abs/2204.09653

[9] Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jeffrey Nichols, and
Xiaoyi Zhang. 2022. Towards Complete Icon Labeling in Mobile Applications. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems

(New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New
York, NY, USA, Article 387, 14 pages. https://doi.org/10.1145/3491102.3502073

[10] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming
Zhu, and Guoqiang Li. 2020. Object detection for graphical user interface: old
fashioned or deep learning or a combination?. In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE ’20). ACM. https://doi.org/10.
1145/3368089.3409691

[11] Liuqing Chen, Yunnong Chen, Shuhong Xiao, Yaxuan Song, Lingyun Sun, Yankun
Zhen, Tingting Zhou, and Yanfang Chang. 2024. EGFE: End-to-end Grouping of
Fragmented Elements in UI Designs with Multimodal Learning. In Proceedings of

the IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24,

Vol. 1). ACM, 1–12. https://doi.org/10.1145/3597503.3623313
[12] Liguo Chen, Qi Guo, Hongrui Jia, Zhengran Zeng, Xin Wang, Yijiang Xu, Jian

Wu, Yidong Wang, Qing Gao, Jindong Wang, Wei Ye, and Shikun Zhang. 2024.
A Survey on Evaluating Large Language Models in Code Generation Tasks.
arXiv:2408.16498 [cs.SE] https://arxiv.org/abs/2408.16498

[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2303.09128
https://arxiv.org/abs/2303.09128
https://doi.org/10.1007/s10462-023-10631-z
https://doi.org/10.1007/s10462-023-10631-z
https://arxiv.org/abs/1705.07962
https://arxiv.org/abs/1705.07962
https://api.semanticscholar.org/CorpusID:265349539
https://api.semanticscholar.org/CorpusID:265349539
https://arxiv.org/abs/2303.03582
https://arxiv.org/abs/2303.03582
https://doi.org/10.1145/3180155.3180240
https://doi.org/10.1145/3180155.3180240
https://arxiv.org/abs/2204.09653
https://arxiv.org/abs/2204.09653
https://doi.org/10.1145/3491102.3502073
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3597503.3623313
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2107.03374

Bridging Design and Development with Automated Declarative UI Code Generation Conference’17, July 2017, Washington, DC, USA

https://arxiv.org/abs/2107.03374
[14] Wen-Yin Chen, Pavol Podstreleny, Wen-Huang Cheng, Yung-Yao Chen, and Kai-

Lung Hua. 2021. Code generation from a graphical user interface via attention-
based encoder–decoder model. Multimedia Systems 28 (2021), 121 – 130. https:
//api.semanticscholar.org/CorpusID:236365436

[15] Daniel de Souza Baulé, Christiane Gresse von Wangenheim, Aldo von Wangen-
heim, and Jean Carlo Rossa Hauck. 2020. Recent Progress in Automated Code Gen-
eration fromGUI Images UsingMachine Learning Techniques. J. Univers. Comput.

Sci. 26 (2020), 1095–1127. https://api.semanticscholar.org/CorpusID:227250670
[16] Meghdad Dehghan, Jie JWWu, FatemehH. Fard, and Ali Ouni. 2024. MergeRepair:

An Exploratory Study on Merging Task-Specific Adapters in Code LLMs for
Automated Program Repair. arXiv:2408.09568 [cs.SE] https://arxiv.org/abs/2408.
09568

[17] Jiangyi Deng, Xinfeng Li, Yanjiao Chen, Yijie Bai, Haiqin Weng, Yan Liu, Tao
Wei, and Wenyuan Xu. 2024. RACONTEUR: A Knowledgeable, Insightful, and
Portable LLM-Powered Shell Command Explainer. arXiv:2409.02074 [cs.CR]
https://arxiv.org/abs/2409.02074

[18] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. Self-collaboration Code
Generation via ChatGPT. arXiv:2304.07590 [cs.SE] https://arxiv.org/abs/2304.
07590

[19] Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin,
Tat-Seng Chua, and Qing Li. 2024. A Survey on RAG Meeting LLMs: Towards
Retrieval-Augmented Large Language Models. arXiv:2405.06211 [cs.CL] https:
//arxiv.org/abs/2405.06211

[20] Figma. 2024. Figma: Collaborative Interface Design Tool. https://www.figma.
com/ Accessed: 2024-09-05.

[21] Flatirons. 2024. Popularity of Flutter vs. React Native in 2024. https://flatirons.
com/blog/popularity-of-flutter-vs-react-native-2024/ Accessed: 2024-09-05.

[22] Flutter. 2024. User Interface (UI) in Flutter. https://docs.flutter.dev/ui Accessed:
2024-09-05.

[23] Shuzheng Gao, Xinjie Wen, Cuiyun Gao, Wenxuan Wang, and Michael R.
Lyu. 2023. Constructing Effective In-Context Demonstration for Code In-
telligence Tasks: An Empirical Study. ArXiv abs/2304.07575 (2023). https:
//api.semanticscholar.org/CorpusID:263867793

[24] Google Play Store. 2024. Amazon Shopping. https://play.google.com/store/apps/
details?id=com.amazon.mShop.android.shopping&hl=en Accessed: 2024-09-05.

[25] Google Play Store. 2024. Google Play Store: Apps Section. https://play.google.
com/store/apps?hl=en Accessed: 2024-09-05.

[26] Google Play Store. 2024. Lazada - Online Shopping App. https://play.google.
com/store/apps/details?id=com.lazada.android&hl=en Accessed: 2024-09-05.

[27] Jian Gu, Pasquale Salza, and Harald C. Gall. 2022. Assemble Foundation Models
for Automatic Code Summarization. arXiv:2201.05222 [cs.SE] https://arxiv.org/
abs/2201.05222

[28] Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang, Yi Su, Shaoling Dong,
Xing Zhou, and Wenbin Jiang. 2024. VISION2UI: A Real-World Dataset with
Layout for Code Generation from UI Designs. arXiv:2404.06369 [cs.CV] https:
//arxiv.org/abs/2404.06369

[29] Huawei. 2024. ArkUI Overview: HarmonyOS. https://developer.huawei.com/
consumer/cn/doc/harmonyos-guides-V5/arkui-overview-V5 Accessed: 2024-09-
05.

[30] Increment. 2024. The Shift to Declarative UI. https://increment.com/mobile/the-
shift-to-declarative-ui/ Accessed: 2024-09-05.

[31] Vanita Jain, Piyush Agrawal, Subham Banga, Rishabh Kapoor, and Shashwat
Gulyani. 2019. Sketch2Code: Transformation of Sketches to UI in Real-time Using
Deep Neural Network. arXiv:1910.08930 [cs.CV] https://arxiv.org/abs/1910.08930

[32] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. 2024. A
Survey on Large LanguageModels for Code Generation. arXiv:2406.00515 [cs.CL]
https://arxiv.org/abs/2406.00515

[33] Dharma KC and Clayton T. Morrison. 2023. Neural Machine Translation for Code
Generation. arXiv:2305.13504 [cs.CL] https://arxiv.org/abs/2305.13504

[34] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollár, and Ross Girshick. 2023. Segment Anything. arXiv:2304.02643 (2023).

[35] Changwon Kwak, Pilsu Jung, and Seonah Lee. 2023. A Multimodal Deep Learning
Model Using Text, Image, and Code Data for Improving Issue Classification Tasks.
Applied Sciences (2023). https://api.semanticscholar.org/CorpusID:261157795

[36] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-guided test input generator for Android. In Proceedings of the

39th International Conference on Software Engineering Companion (Buenos Aires,
Argentina) (ICSE-C ’17). IEEE Press, 23–26. https://doi.org/10.1109/ICSE-C.2017.8

[37] Dongyang Liu, Shitian Zhao, Le Zhuo, Weifeng Lin, Yu Qiao, Hongsheng Li, and
Peng Gao. 2024. Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image
Generation with Multimodal Generative Pretraining. arXiv:2408.02657 [cs.CV]
https://arxiv.org/abs/2408.02657

[38] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan
Li, Jianwei Yang, Hang Su, Jun Zhu, et al. 2023. Grounding dino: Marrying
dino with grounded pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499 (2023).

[39] Yizhou Liu, Pengfei Gao, Xinchen Wang, Jie Liu, Yexuan Shi, Zhao Zhang,
and Chao Peng. 2024. MarsCode Agent: AI-native Automated Bug Fixing.
arXiv:2409.00899 [cs.SE] https://arxiv.org/abs/2409.00899

[40] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
AMachine Learning Benchmark Dataset for Code Understanding and Generation.
arXiv:2102.04664 [cs.SE] https://arxiv.org/abs/2102.04664

[41] Sanbi Luo. 2021. A Survey on Multimodal Deep Learning for Image Synthesis:
Applications, methods, datasets, evaluation metrics, and results comparison.
Proceedings of the 2021 5th International Conference on Innovation in Artificial

Intelligence (2021). https://api.semanticscholar.org/CorpusID:237412418
[42] MobileAppDaily. 2024. Mobile App Development Process: Step-by-Step

Guide. https://www.mobileappdaily.com/knowledge-hub/mobile-app-
development-process Accessed: 2024-09-05.

[43] Yun nong Chen, Yan kun Zhen, Chu ning Shi, Jia zhi Li, Liu qing Chen, Ze jian Li,
Ling yun Sun, Ting ting Zhou, and Yan fang Chang. 2022. UI Layers Merger: Merg-
ing UI layers via Visual Learning and Boundary Prior. arXiv:2206.13389 [cs.CV]
https://arxiv.org/abs/2206.13389

[44] OpenAI Hello GPT-4o [n. d.]. Hello GPT-4o | OpenAI. https://openai.com/index/
hello-gpt-4o/

[45] Ciyuan Peng, Feng Xia, Mehdi Naseriparsa, and Francesco Osborne. 2023.
Knowledge Graphs: Opportunities and Challenges. arXiv:2303.13948 [cs.AI]
https://arxiv.org/abs/2303.13948

[46] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Rad-
ford, Mark Chen, and Ilya Sutskever. 2021. Zero-Shot Text-to-Image Generation.
arXiv:2102.12092 [cs.CV] https://arxiv.org/abs/2102.12092

[47] React Native. 2024. Getting Started with React Native. https://reactnative.dev/
docs/getting-started Accessed: 2024-09-05.

[48] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Den-
ton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J Fleet, and Mohammad
Norouzi. 2022. Photorealistic Text-to-Image Diffusion Models with Deep Lan-
guage Understanding. arXiv:2205.11487 [cs.CV] https://arxiv.org/abs/2205.11487

[49] ScreenshotToCode2024 [n. d.]. Screenshot to Code: Transform Screenshots into
Code! https://supertools.therundown.ai/content/screenshot-to-code

[50] Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. 2024.
Design2Code: How Far Are We From Automating Front-End Engineering?
arXiv:2403.03163 [cs.CL]

[51] The Decoder. 2024. ChatGPT Guide: Effective Prompt Strategies. https://the-
decoder.com/chatgpt-guide-prompt-strategies/ Accessed: 2024-09-05.

[52] Yuxuan Wan, Chaozheng Wang, Yi Dong, Wenxuan Wang, Shuqing Li, Yin-
tong Huo, and Michael R. Lyu. 2024. Automatically Generating UI Code from
Screenshot: A Divide-and-Conquer-Based Approach. arXiv:2406.16386 [cs.SE]
https://arxiv.org/abs/2406.16386

[53] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on

Image Processing 13, 4 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861
[54] Wolfpack Digital. 2024. Declarative UI: A New Way of Building Mobile

Apps. https://www.wolfpack-digital.com/blogposts/declarative-ui-new-way-
of-building-mobile-apps Accessed: 2024-09-05.

[55] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and
Nan Duan. 2023. Visual ChatGPT: Talking, Drawing and Editing with Visual
Foundation Models. arXiv:2303.04671 [cs.CV] https://arxiv.org/abs/2303.04671

[56] Jason Wu, Eldon Schoop, Alan Leung, Titus Barik, Jeffrey P. Bigham, and Jeffrey
Nichols. 2024. UICoder: Finetuning Large Language Models to Generate User
Interface Code through Automated Feedback. arXiv:2406.07739 [cs.CL] https:
//arxiv.org/abs/2406.07739

[57] Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P Bigham. 2021. Screen Parsing:
Towards Reverse Engineering of UI Models from Screenshots. In The 34th Annual

ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’21). Association for Computing Machinery, New York, NY, USA, 470–483.
https://doi.org/10.1145/3472749.3474763

[58] Shuhong Xiao, Yunnong Chen, Jiazhi Li, Liuqing Chen, Lingyun Sun, and Tingting
Zhou. 2024. Prototype2Code: End-to-end Front-end Code Generation from UI
Design Prototypes. arXiv:2405.04975 [cs.SE] https://arxiv.org/abs/2405.04975

[59] Kangwei Xu, Grace Li Zhang, Xunzhao Yin, Cheng Zhuo, Ulf Schlichtmann, and
Bing Li. 2024. Automated C/C++ Program Repair for High-Level Synthesis via
Large Language Models. arXiv:2407.03889 [eess.SY] https://arxiv.org/abs/2407.
03889

[60] Boyang Yang, Haoye Tian, Weiguo Pian, Haoran Yu, Haitao Wang, Jacques
Klein, Tegawendé F. Bissyandé, and Shunfu Jin. 2024. CREF: An LLM-
based Conversational Software Repair Framework for Programming Tutors.
arXiv:2406.13972 [cs.SE] https://arxiv.org/abs/2406.13972

[61] Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng
Liu, and Lijuan Wang. 2023. The Dawn of LMMs: Preliminary Explorations with
GPT-4V(ision). arXiv:2309.17421 [cs.CV] https://arxiv.org/abs/2309.17421

https://arxiv.org/abs/2107.03374
https://api.semanticscholar.org/CorpusID:236365436
https://api.semanticscholar.org/CorpusID:236365436
https://api.semanticscholar.org/CorpusID:227250670
https://arxiv.org/abs/2408.09568
https://arxiv.org/abs/2408.09568
https://arxiv.org/abs/2408.09568
https://arxiv.org/abs/2409.02074
https://arxiv.org/abs/2409.02074
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2405.06211
https://arxiv.org/abs/2405.06211
https://arxiv.org/abs/2405.06211
https://www.figma.com/
https://www.figma.com/
https://flatirons.com/blog/popularity-of-flutter-vs-react-native-2024/
https://flatirons.com/blog/popularity-of-flutter-vs-react-native-2024/
https://docs.flutter.dev/ui
https://api.semanticscholar.org/CorpusID:263867793
https://api.semanticscholar.org/CorpusID:263867793
https://play.google.com/store/apps/details?id=com.amazon.mShop.android.shopping&hl=en
https://play.google.com/store/apps/details?id=com.amazon.mShop.android.shopping&hl=en
https://play.google.com/store/apps?hl=en
https://play.google.com/store/apps?hl=en
https://play.google.com/store/apps/details?id=com.lazada.android&hl=en
https://play.google.com/store/apps/details?id=com.lazada.android&hl=en
https://arxiv.org/abs/2201.05222
https://arxiv.org/abs/2201.05222
https://arxiv.org/abs/2201.05222
https://arxiv.org/abs/2404.06369
https://arxiv.org/abs/2404.06369
https://arxiv.org/abs/2404.06369
https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/arkui-overview-V5
https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/arkui-overview-V5
https://increment.com/mobile/the-shift-to-declarative-ui/
https://increment.com/mobile/the-shift-to-declarative-ui/
https://arxiv.org/abs/1910.08930
https://arxiv.org/abs/1910.08930
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2305.13504
https://arxiv.org/abs/2305.13504
https://api.semanticscholar.org/CorpusID:261157795
https://doi.org/10.1109/ICSE-C.2017.8
https://arxiv.org/abs/2408.02657
https://arxiv.org/abs/2408.02657
https://arxiv.org/abs/2409.00899
https://arxiv.org/abs/2409.00899
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://api.semanticscholar.org/CorpusID:237412418
https://www.mobileappdaily.com/knowledge-hub/mobile-app-development-process
https://www.mobileappdaily.com/knowledge-hub/mobile-app-development-process
https://arxiv.org/abs/2206.13389
https://arxiv.org/abs/2206.13389
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2303.13948
https://arxiv.org/abs/2303.13948
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://reactnative.dev/docs/getting-started
https://reactnative.dev/docs/getting-started
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487
https://supertools.therundown.ai/content/screenshot-to-code
https://arxiv.org/abs/2403.03163
https://the-decoder.com/chatgpt-guide-prompt-strategies/
https://the-decoder.com/chatgpt-guide-prompt-strategies/
https://arxiv.org/abs/2406.16386
https://arxiv.org/abs/2406.16386
https://doi.org/10.1109/TIP.2003.819861
https://www.wolfpack-digital.com/blogposts/declarative-ui-new-way-of-building-mobile-apps
https://www.wolfpack-digital.com/blogposts/declarative-ui-new-way-of-building-mobile-apps
https://arxiv.org/abs/2303.04671
https://arxiv.org/abs/2303.04671
https://arxiv.org/abs/2406.07739
https://arxiv.org/abs/2406.07739
https://arxiv.org/abs/2406.07739
https://doi.org/10.1145/3472749.3474763
https://arxiv.org/abs/2405.04975
https://arxiv.org/abs/2405.04975
https://arxiv.org/abs/2407.03889
https://arxiv.org/abs/2407.03889
https://arxiv.org/abs/2407.03889
https://arxiv.org/abs/2406.13972
https://arxiv.org/abs/2406.13972
https://arxiv.org/abs/2309.17421
https://arxiv.org/abs/2309.17421

	Abstract
	1 Introduction
	2 Background and Motivations
	3 Approach
	3.1 PTG Construction
	3.2 UI Component Extraction and Representation
	3.3 Prompt Synthesis
	3.4 Iterative Code Refinement

	4 Evaluation
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Effectiveness (RQ1)
	4.4 Ablation Study (RQ2)
	4.5 User Study and Manual Repair (RQ3)

	5 Discussion
	5.1 Retrieval-Augmented Generation (RAG): Impact and Implications
	5.2 Threat to Validity

	6 Related Work
	7 Conclusion
	References

